Recurrent Neural Networks to Approximate the
Semantics of Acceptable Logic Programs

Steffen Holldobler ! and Yvonne Kalinke 2 * and Hans—Peter Storr !

Computer Science Department
University of Technology Dresden
D-01062 Dresden, Germany
{sh,haps}@inf.tu-dresden.de
2 Neurocomputing Research Centre
Queensland University of Technology
Brisbane, Australia, GPO Box 2434, QLD 4001
yvonne@fit.qut.edu.au

Abstract. In [9] we have shown how to construct a 3 -layer recurrent
neural network (RNN) that computes the iteration of the meaning func-
tion T of a given propositional logic program, what corresponds to the
computation of the semantics of the program.

In this paper we define a notion of approximation for interpretations and
prove that there exists a feed forward neural network (FNN) that ap-
proximates the calculation of T» for a given (first order) acceptable logic
program with an injective level mapping arbitrarily well. By extending
the FNN by recurrent connections we get a RNN whose iteration ap-
proximates the fixed point of Tp .

The proof is found by taking advantage of the fact that for acceptable
logic programs, T is a contraction mapping on the complete metric
space of the interpretations for the program. Mapping this metric space
to the metric space IR the real valued function fp corresponding to
Tp turns out to be continuous and a contraction and for this reason can
be approximated by an indicated class of FNN.

1 Introduction

Many researchers are convinced that intelligent agents reason by generating mod-
els and deducing conclusions with respects to these models (see e.g. [11]). In real
agents the reasoning process itself is performed by highly recurrent neural net-
works, whose precise structure and functionality is still not very well understood.
Artificial neural or connectionist networks are just a rather crude model for such
real neural networks. Nevertheless, they serve as a reasonable model and one
of the major open question is how the full power of deductive processes can be
implemented on connectionist networks (see e.g. [16]). In this paper we will focus
on this problem by establishing a strong link between model generation in the

* The author acknowledges support from the German Academic Exchange Service
(DAAD) under grant no. D/97/29570.

context of first order logic and recursive artificial neural networks. In particular,
we will show that for a certain class of logic programs the least model of a given
program can be approximated arbitrarily well by a recursive artificial neural
network.

Model generation is a well established area within automated deduction (see
e.g. [13, 7, 15]). In particular, the semantics of a (logic) program P is often
defined with the help of a so—called meaning function T’» . In many but not all
cases a logic program P admits a least model, which can be computed as the
least fixed point of Tp, and research is focussed on identifying classes of pro-
grams for which such least models exist. For these classes Tp effectively specifies
a model generation procedure. Examples are the class of definite programs (see
e.g. [12]), where the correspondence between the least model of P and the least
fixed point of T can be shown by lattice—theoretic arguments [1], or the class
of acceptable programs, where the just mentioned correspondence can be shown
using metric methods [6].

It turned out that the computation of the least model for a program from one
of the just mentioned classes can be performed by a recursive network of binary
threshold units if the programs are propositional [9]: With each interpretation
I a vector of units is identified such that the jth unit is active iff the jth
propositional variable is mapped to true by I. Two such vectors serve as input
respective output layer of a 3-layered feed forward network, or FNN for short.
The hidden layer is constructed such that it contains a unit for each program
clause. Such a unit becomes active as soon as the body of the clause is satisfied
by the interpretation represented by the activation pattern of the input layer,
and propagates its activation to the unit in the output layer representing the
head of the clause. Figure 1 depicts such a network for a small example. From its
construction follows immediately that such a network computes the application
of Tp to an interpretation I. Turning this network into a recursive one (RNN)
by connecting corresponding units in the output and input layer with weight 1
allows to compute the least fixed point of T’p for acceptable logic programs.

One should observe that the number of units and the number of connections
in an RNN corresponding to a propositional program are bounded by O(m + n)
and O(m x n) respectively, where n is the number of clauses and m is the
number of propositional variables occurring in the program. Furthermore, the
application of Tp to a given interpretation is computed in 2 steps. As the
sequential time to compute Tp is bound by O(n x m) (assuming that no
literal occurs more than once in the conditions of a clause), the resulting parallel
computational model is optimal.?

The approach in [9] provides a new computational model for the computation
of the least model of logic programs, which is massively parallel and optimal.
Since FNNs are widely used and there are powerful learning algorithms like
backpropagation, we also may use these techniques to adapt our program. We

3 A parallel computational model requiring p(n) processors and t(n) time to a solve a
problem of size n is optimal if p(n) xt(n) = O(T(n)) , where T'(n) is the sequential
time to solve this problem.

Fig.1. A FNN computing Tp» for the program P = {A « -B; A « C,D;
D + —E,F} . The numbers in the units denote thresholds whereas the numbers at the
connections denote weights. Connections with weight 0 are not shown.

can, for instance, train a given FNN with knowledge not yet included in the
program. If we then extract a new logic program from the trained network we
get an extended program including new clauses (see [5]). Moreover, the approach
establishes a strong relationship between propositional logic programming and
recursive neural networks. Since, in contrast to RNNs, logic programs are well
understood this may help us to gain a better insight into RNNs, to formally an-
alyze these networks and to give a declarative semantics for what these networks
are doing.

But the question remains how this relationship may look like in the first or-
der case? Since in this case an interpretation may be an infinite subset of the
set of ground atoms wrt the alphabet underlying a program, the construction
developed in [9] may lead to infinite FNNs and RNNs if applied to first order
logic programs. This is unacceptable in practice, where we can handle only finite
networks. On the other hand, we may use real valued units with sigmoidal acti-
vation functions instead of the binary threshold units used in the propositional
case.

FNNs with at least one hidden layer of real valued units with sigmoidal
activation function are known to approximate continuous real valued functions
as well as Borel measurable functions arbitrarily well [8, 10]. This gives rise
to the following idea: Can we find a real valued function fp corresponding to
Tp such that these results can be used to approximate fp and, thereby, Tp
arbitrarily well? If such a function fp exists and we find an FNN approximating
fp to a desired degree of accuracy, can we then turn the FNN into an RNN
approximating the least fixed point of T’p arbitrarily well?

In this paper we define a class of first order logic programs such that both

questions are answered positively for this class. We also discuss what precisely
is denoted by an approximation of the least model of a first order logic program.
For the first time this gives us a strong link between first order model generation
and the computation performed by a recursive neural network.

The remainder of this paper is organized as follows. After stating some pre-
liminaries concerning logic programs and metric spaces in Section 2, we show
in Section 3 how to encode the domain of the meaning function 7% into IR.
In Section 4 we use this mapping to construct a real valued function fp corre-
sponding to the function T’p . In Section 5 we show that the real valued function
fp is continuous for a certain class of programs and that an FNN with sigmoidal
activation functions and at least one hidden layer can approximate the function
fp . Thereafter we show how to extend the FNN to a RNN such that the it-
eration of fp corresponds to the iteration of T» and therefore computes the
least fixed point of T’ . Since in the case of acceptable programs such a fixed
point does always exist we end up with a RNN computing the semantics of the
logic program P . Finally, we discuss our results and point out future work in
Section 8.

2 Preliminaries

In the following two subsections we briefly recall basic notions and notations
concerning logic programs according to [12] and metric spaces as in [6].

2.1 Logic Programs

A logic program P is a collection of clauses of the form A <« Ly,..., L, , where
n >0, A isan atom and L;, 1 <i <n, are literals. A program P is called
definite if each clause occurring in P contains only atoms. Bp denotes the
Herbrand base wrt the alphabet underlying P . A level mapping for a program
P is a function | |: Bp - IN , where IN denotes the set of natural numbers.
If |A] =n we will say the level of the atom A € Bp is n.

An interpretation is a mapping from ground atoms to {1,0} . It is extended
to literals, clauses and programs in the usual way. A model for P is an interpre-
tation which maps P to 1. The meaning function Tp : 287 — 2B7 is defined
as follows: Let I be an interpretation and A a ground atom. A € Tp(I) iff
there exists a ground instance A < Ly,...,L, in P such that A;_, L;€I.

Let P be a program and p and g predicate symbols. p refers to ¢ if there
is a clause in P with head p and ¢ in its body. p depends on q if either p = ¢
or there is a sequence p = p1, P2, ..., Pn = ¢, Where each p; refers to p;i1,
1 <i < n. Negp is the set of atoms in P which occur in a negative literal
in the body of a clause of P. Neglp is the set of atoms in P on which the
variables in Negp depend. P~ is the set of clauses in P whose head contains
a relation from Negp .

4 We use the usual notation of I: An atom A € Bp is mapped to true iff AeI.

Let Comp(P) denote the Clark completion of a program P [3]. Furthermore,
let P be a program, | | a level mapping for P, and I a model of P whose
restriction to the atoms in Negp is a model for Comp(P~). P is acceptable
wrt | | and T if for every ground instance of a clause A « Ly,...,L, in P
and for every i, 1 <i <n, we find that I |= /\;;11 L; implies |A| > |L;|. P
is acceptable if it is acceptable wrt some level mapping and some model.

2.2 Metric Spaces

A metric or distance function on a space M is a mapping d : M x M — R =°
such that d(z,y) = 0 iff x = y, d(z,y) = d(y,z), and d(z,y) < d(z,2) +
d(z,y), where IR 2% denotes the set of non-negative real numbers. Let (M, d)
be a metric space and S = sy, S2, ..., s; € M, be a sequence on M. S
converges if 3s € M : Ve > 0: 3N :Vn > N : d(s,,s) < e. S is Cauchy if
Ve > O :3N :Vn,m > N :d(sn,5m) <e. (M,d) is complete if every Cauchy
sequence converges. A mapping f : M — M is a contraction on (M,d) if
W<k<l:Vr,ye M:d(f(z), fly) <k-d(z,y).

Consider a logic program P, a level mapping | | for P and the set 257
of interpretations for P . The distance function dp on 257 | associated with
| | is defined as follows. Let I and J be two interpretations. If I = J then
dp(I,J) =0. Otherwise, dp(I,J) =2 ", where I and J differ on some atom
A of level n but agree on all atoms of lower level. As shown in [6] the distance
function dp associated with a level mapping | | for P is actually a metrics
and the metric space (287,dp) is complete.

Proposition 1 (Fitting [6]). Let P be an acceptable program. There exists
a level mapping | | such that the meaning function Tp is a contraction on
the complete metric space (27 ,dp), where dp denotes the distance function
associated with the level mapping | | .

Theorem 2 (Banach Contraction Theorem [18]). A contraction mapping
f on a complete metric space has a unique fized point. The sequence x, f(x),
f(f(x)),... converges to this fized point for any x .

3 Mapping Interpretations to Real Numbers

Since we are interested in first order logic programs, the arguments of the mean-
ing function T’p are interpretations which may consist of a countably infinite
number of ground atoms. As already mentioned in the introduction the simple
solution for the propositional case as presented in [9], where each ground atom
is represented by a binary threshold unit is no longer feasible. To extend the rep-
resentational capability of our network we use real valued units with sigmoidal
activation functions instead. Thus interpretations are to be represented by real
numbers.

In this section we define an encoding R of the domain 277 of the meaning
function Tp into IR . Considering our aim of approximating Tp» by the use of

an FNN, we should make sure that the encoding of T’» in terms of a real valued
function fp is done in a way such that fp can indeed be approximated. For
example, if fp would be continuous, then we could apply the result of [8] that
continuous functions can be approximated arbitrarily well by an FNN.> As we
shall see, by restricting ourselves to a certain class of acceptable programs we
can ensure that the function fp encoding Tp is continuous.

We start from a level mapping | | : Bp — IN from ground atoms to nat-
ural numbers as for instance used in [6]. We further require it to be injective,
and express this by renaming it to || ||. This restriction is discussed further in
Section 6.

We use the level mapping || || to define a mapping R from the set 257 of
interpretations for a logic program P to the real numbers:

Definition 3. The mapping R : 287 — R is defined as R(I) =Y ., 47141l

Thus an interpretation I is mapped to the real number whose n-th digit
after the comma in the quaternary® number system is 1 if there is an atom A
in I with |[|A|| =n,” and 0 otherwise. The requirement of || || to be injective
ensures that R is injective and thus there is an inverse mapping R~!. This
inverse mapping is extended to a function R~ : IR — 257 by taking the value
I of the nearest point R(I) for I € 257 8.

There is a close relation between the metric dp on interpretations and the
distance of the corresponding real numbers:

Proposition4. For two interpretations I,J € 287 the following holds:
2 4
2 wdp(LJ <|R(D) = R()| < 5 % dp(1,0)*

Proof. Let n be the lowest level of an atom for which the interpretations I and
J differ. Thus dp(I,J) =2~" and hence dp(I,J)? =47".

Since all atoms A with level ||A|| < n are mapped to the same truth value
by I and J it follows from the definition of R that

o0 o0
47— N AT |R(D) - R(J)| <47+ D 4T
i=n+1 i=n-+1

which yields 2 47" < |R(I) — R(J)| < 2 *x4™™ and hence the proposition

holds. a

® In this paper we do not use the more general result of [10] that a FNN can approxi-

mate Borel-measurable arbitrarily well because the notion of approximation in [10]

includes only almost all points of the domain of the function instead of all points,

as in the case of [8].

The obvious choice of the binary number system does not work because of the am-

biguity 0.1000..., = 0.01111...,. Additionally, the quaternary number system

ensures fp being a contraction (see Prop. 6).

There is at most one such atom because || || is injective.

8 Such a point exists, because the set {R(I)|I € 257} is closed. If there are two such
points, we take the lower one.

Tp

I €287 > J'e2BP
R R7! R R7!
re Df > r' e Df
fr

Fig. 2. The relation between T» and fp .

4 Mapping Tp to a Real Valued Function fp

The encoding R maps the elements of the domain of T» to real numbers.
Hence, we immediately obtain a function fp on IR such that the application
of fp to areal number r = R(I) encoding the interpretation I is equivalent
to applying Tp to I = R™*(r). Figure 2 depicts the relation between Tp and
fp . Please note that the encoding R defined in Definition 3 is just an example
for mapping 287 to IR . We can use any mapping such that fp is continuous
on IR iff Tp is a contraction on 257 .

Definition 5. Let P be a logic program, Bp the Herbrand base and T» the
meaning function associated with P . Let R be an encoding of 27 in IR and
the set Dy C IR the range of R . The real valued function fp corresponding
to Tp is defined by

pr : Df — Df e d R(Tp(R_l(’I")))

The function fp is extended to a function fp : IR — IR by linear interpolation:

Fr(r) if »r €Dy
fr(minDy) if r <minDy
fr(r) = fr(maxDy) if r>maxDy
(M, —r)sfp(me)+(r—mu)xfp(Mr) (4 orwise
r—Mnp

where m, = max(Dy U (—oo,r]) and M, = min(Dy U [r,00)) are the greatest
point of Dy below r and least point of Dy above r respectively.

To prove that fp is continuous we first prove the following property of fp :

Proposition 6. Let P be an acceptable logic program with an injective level
mapping, Tp the meaning function associated with P and fp the real valued
function corresponding to Tp . Then fp is a contraction on TR, since

1
vrort € R :|fp(r') = fpr)l < Sl =] -

Proof. For any r € IR we can show that I = R !(r) € 287 and moreover
define fp by fp: R - R :r+— R(Tp(I)) with I = R~!(z,), where =z, €
Dy is determined by r?. Now let r,r’ € R, I = R"*(r) and I' = R7'(+') .
From Proposition 4 and since I, I’ € 257 it follows
2/3xdp(I,I')> <|R(I)— R(I')|=|r —r'| and (1
Fp() = fp(")] = [R(Tp(D) — R(Tp(I)| < 4/3 5 dp(Tp(I), Tp(I')? . (2
Since by Proposition 1 Tp is a contraction, i.e. dp(Tp(I),Tp(I") < dp(I,I'),
and by the definition of dp, dp(Tp(I),Tp(I')) < 2dp(I,I') we conclude
dp(Tp(I), Tp(I")* < 1d(I,I')* . The proposition follows immediately using (1)
and (2). O

)
)

As an immediate consequence of Proposition 6 we obtain:
Corollary 7. Let P be an acceptable logic program with an injective level map-
ping, Tp the meaning function associated with P and fp the real valued func-
tion corresponding to Tp . Then the function fp is continuous.

5 Approximating the Meaning Function Tp

Since fp is a continuous real valued function we can apply the following theorem
stating the approximation capability of a class of FNNs.

Theorem 8 (Funahashi [8]). Let ¢(z) be a non constant, bounded and mono-
tone increasing continuous function. Let K be a compact subset (bounded closed
subset) of R"™ and f(xyi,...,x,) be a real valued function on K . Then for
an arbitrary € > 0, there exists an integer N and real constants c;, 0;(i =
1,...,N), wij(i=1,...,N,j=1,...,n) such that

N n
f(mla-'-)xn)zzci¢ Zwijﬂ?j—ei
=1 j=1

satisfies max x ex |f(21,. - 2n) — f(T1,...,2,)| <€ .

In other words, for an arbitrary £ > 0, there exists a 3-layered FNN whose
output functions for the hidden layer are ¢(x), its output functions for input

and output layers are linear and it has an input-output function f(x1,...,zy)
such that max x ex |f(21,...,2n) — f(z1,...,2,)| <€ .
Applying Theorem 8 to Corollary 7 which states that fp is continuous we

can easily show that the following theorem holds:

Theorem 9. Let P be an acceptable logic program with an injective level map-
ping and Tp the meaning function associated with P . Let fp be the continuous
real valued function corresponding to Tp . Then for an arbitrary ¢ > 0, there
ezists an FNN with sigmoidal activation function for the hidden layer units and
linear activation functions for the input and output layer units computing the
function fp which satisfies max,coq] | fr(z) — fp(z)| <e .

9 We omit details due to space limitations.

The theorem states that given a certain accuracy we can construct an FNN
that approximates fp to this desired degree of accuracy. Using the mapping
R™' we thereby obtain an FNN capable of approximating the meaning function
Tp for an acceptable logic program P with injective level mapping. In the fol-
lowing section we exemplify this result and clarify the notion of an approximation
of Tp .

6 An Example

Consider the program
P p(0).
p(s(X)) < p(X).

and the injective level mapping ||p(s™(0))|| = n+1 for n € IN .1° The program
is acceptable wrt the level mapping ||| and the interpretation I = Bp . In this
case we find

Fr(R(D)) = 4*Hp(z)ll + EMX)EA""’“;X”” o
= 4P 4 Y AU = &y LR(T)

The iteration of Tp , which yields the semantics of the program P, corre-
sponds to the iteration of fp. What happens during this iteration? If we ap-
proximate fp to an accuracy e the evaluation of the approximation fp yields

avalue fp(z) €[22 —, 42 +¢]. Thus, if = is in the interval [a,d], the result
144e
3

_ e -
fp(z) isin the interval [“—— 4 152, ’ T~ +1E£%] | It is easy to see that in

the limit the iteration of fp yields a value within [L51e, 1222] (though it does
not necessarily converge to a fixed value within this interval.) If we convert such
a value r € [15%2, HA2] with R™! back to Bp we see that p(s"(0)) € R (r)
for n < log,e—1, which coincides with the model {p(0),p(s(0)),p(s(s(0))),...}
of P . The values for p(s™(0)) wrt R~!(r) with n >log, e —1 may differ from
the intended model.

This clarifies our notion of approximation of an interpretation or a model:
An interpretation I approzimates an interpretation J to a degree N , if for all
atoms A € Bp with ||A|| < N, A€ I iff A€ J.Equivalently, dp(I,J) <27V

One should observe that in our example we are not only able to approximate
the calculation of T» but are able to approximate the fixed point of Tp by
iteration of the approximation.

Unfortunately, not all acceptable programs admit an injective level mapping.
Consider for instance the logic program

Q:q <+ p(f(X)).

It is acceptable wrt the level mapping || : VX € Up. p(f(X)) = 1,¢ — 2 and
the interpretation I = {}, but it does not admit an injective level mapping for
10 s™(0) is an abbreviation for s(s(---s(0)---)) .

———

n

which Tp is a contraction because the level of ¢ has to be greater than the
maximum of the level of all infinitely ground instances of p(f(X)).

On the other hand, the program P given above consists of a binary recursive
definite clause and a fact only. As shown in [4] this class of programs has the
same computational power as a Turing machine. Since it was also shown that
each definite program can automatically be transformed into such an universal
program, the computational power of the class of acceptable logic programs that
are considered here is not restricted.

7 Iteration of the Approximation fp

So far we have shown how to approximate the meaning function T’ . However,
we are mainly interested in the approximation of the least fixed point of T'p .
From Theorem 9 we have learned that there exits an FNN computing fp , which
is the approximation of fp , which in turn represents Tp» . Given such an FNN we
could turn this FNN into an RNN by adding recurrent connections with weight
1 between corresponding units in the output and input layer of the FNN. Does
such an RNN approximate the least fixed point of T» ? Whereas Theorem 9
tells us the activation value fp(r) is within e of fp(r) after the first iteration
of the RNN, this small difference could lead to bigger difference each step. Our
final theorem tells us this is not the case with our encoding R :

Theorem 10. Let P be an acceptable logic program with an injective level map-
ping, Tp the meaning function associated with P and M the unique fized point
of Tp . For an arbitrary N € IN there exists an RNN with sigmoidal activa-
tion function for the hidden layer units and linear activation functions for the
input and output layer units computing a function fp such that there exists an
n € IN with 1
dp(R™'(fp(0)), M) < oON -
Proof. Let fp be the continuous real valued function corresponding to Tp .
According to Theorem 9 there exists an FNN computing the function fp which
satisfies

max |fp(r) — fp(r)| <e (3)
refo,1]
with ¢ = 221\,%% . If we connect the input and output unit using a connection
with weight 1, and start with an initial activation 0, we obtain an RNN which
computes fg(O) in the n-th step.

Let M be the unique fixed point of T’ . Since the value of fp is within the
interval [0,1] and fp differs at most by e, |f%(0) — R(M)| < 1+ 2 holds.
Assume now |f$*1(0) — R(M)| < 32=1 + 2¢. From (3) follows |fp(~$,1(0)) -
fP(R(M))| < 5= + €. Considering fp(R(M)) = R(M) and (3) we get
|/ (fA(0)) — R(M)| < 5= + 2¢ and thus by induction

7B(0) ~ ROD| < 5+ 22 . @

If we take n = 2N 42 and insert € = s we get |f$(0)—R(M)| < 30w
Because of the definition of R~! |R(R™'(f%(0))) — fR(0)] < b holds'!.

Thus, |R(R™Y(f3(0)))—R(M)| < smosw and by the application of Proposition 4
the theorem follows. O

This theorem tells us that R~'(f2(0)) and M agree in atoms of a level less
than N . In other words, we can approximate the fixed point of the meaning
function T» of an acceptable logic program with an injective level mapping
arbitrarily well with a recurrent neural network.

8 Discussion and Future Work

Extending the result of [9] for the propositional case, we have proven in our
paper that it is possible to approximate the meaning function Tp arbitrarily
well in constant time'2? by an 3-layered FNN (Theorem 9) and that it it is
possible to approximate the fixed point of T» by forming the FNN into an
RNN (Theorem 10).

However, Theorem 9 does not give any clue as to how to construct such a
network and how to represent the arguments of the computations, i.e. sets of
atoms. While our mapping R enables us to prove these theoretical results, it
does not seem to be a practical solution for representing the interpretations in
the process of the iteration of T» because of its brittleness. It does not exploit
the natural insensitivity of FNN to disturbances.

A very obvious and easy solution avoiding these problems is to construct a
network with input and output nodes each representing an atom, i.e. an element
of the Herbrand base of P . But because we do not know in advance which
element we will really need to represent the result of the computation, i.e. the
special interpretations, we have to represent all the atoms of the Herbrand base
up to the end of our memory and it may happen, that we will not need many of
them for our computation.

A solution to this problem is to use a reduced description to represent the
elements of our domain, such as LRAAM- or HRR- coded terms (Labeled Recur-
sive Auto Associative Memory [17], Holographic Reduced Representation [14]).
The problem with the LRAAM model will then be that we have to train it with
many of the terms we will need during the computation. Since we do not know
which terms we will need during the computation the same problem will arise as
before. A better solution is to use HRR—coded terms. We do not need a training
before the computation and we will be able to save the used terms at the time
they appear in the computation process. Then we can save them in a special
memory which will allow us to reduce the decoding error and to save only the
terms we really need during the computation.

1 The nearest point to f5(0) in {A(I)|I € 257} cannot be further away than R(M) .

12 For an interpretation I, Tp (I) is computed in two time steps: propagation from
the input to the hidden layer and propagation from the hidden layer to the output
layer.

Another problem in the practical application of the iteration of Tp with
RNN is that the interpretations that must be represented can become infinite
during one step of the computation of the function Tp . This will fill our finite
memory after one step of computing T’p . A solution to this problem is to use
finite representations for infinite interpretations as shown in [2].

References

1. K.R. Apt and M.H. Van Emden. Contributions to the Theory of Logic Program-
ming. Journal of the ACM, 29, pp. 841-862, 1982.

2. S—E. Bornscheuer. Generating Rational Models. In M. Maher, editor, Proceed-
ings of the Joint International Conference and Symposium on Logic Programming
(JICSLP), p. 547. MIT Press, 1996.

3. K. L. Clark. Negation as failure. In Gallaire and Nicolas, editors, Workshop Logic
and Databases, CERT, Toulouse, France, 1977.

4. P. Devienne and P. Lebégue and A. Parrain and J. C. Routier and J. Wiirz. Small-
est Horn Clause Programs. Journal of Logic Programming, 19(20): pp. 635-679,
1994.

5. A.S. d’Avila Garcez, G. Zaverucha, and L.A.V. de Carvalho. Logic programming
and inductive learning in artificial neural networks. In Ch. Herrmann, F. Reine,
and A. Strohmaier, editors, Knowledge Representation in Neural Networks, pp. 33—
46, Berlin, Logos Verlag, 1997.

6. M. Fitting. Metric methods — three examples and a theorem. Journal of Logic
Programming, 21(3), pp. 113-127, 1994.

7. M. Fujita and R. Hasegawa and M. Koshimura and H. Fujita. Model Generation
Theorem Provers on a Parallel Inference Machine. Proceedings of the International
Conference on Generation Computer Systems, 1992.

8. K.-I. Funahashi. On the approximate realization of continuous mappings by neural
networks. Neural Networks, 2, pp. 183-192, 1989.

9. S. Holldobler and Y. Kalinke. Towards a massively parallel computational model
for logic programming. In Proceedings of the ECAI9, Workshop on Combining
Symbolic and Connectionist Processing, pp. 68-77, ECCAI, 1994.

10. K. Hornik and M. Stinchcombe and H. White. Multilayer feedforward networks
are universal approrimators. Neuronal Networks, 2, pp. 359-366, 1989.

11. P.N. Johnson—Laird and R.M.J. Byrne. Deduction. LEA, Hove and London, 1991.

12. J. W. Lloyd. Foundations of Logic Programming. Springer, 1987.

13. R. Manthey and F. Bry. SATCHMO: A Theorem Prover Implemented in Prolog.
In: E. Lusk and R. Overbeek, editors, LLNCS 310, Springer, pp. 415434, 1988.

14. T. A. Plate. Distributed Representations and Nested Compositional Structure.
PhD thesis, Department of Computer Science, University of Toronto, 1994.

15. J. Slaney. Scott: A model-guided theorem prover. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, pp. 109-114, 1993.

16. P. Smolensky. On the Proper Treatment of Connectionism. Behavioral and Brain
Sciences, 11, pp. 1-74, 1988.

17. A. Sperduti. Labeling RAAM. Technical Report TR-93-029, International Com-
puter Science Institute, Berkeley, Ca, 1992.

18. S. Willard. General Topology. Addison—Wesley, 1970.

This article was processed using the ITEX macro package with LLNCS style

