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Abstract� In ���� we have shown how to construct a ��layered recurrent neural network that computes
the �xed point of the meaning function TP of a given propositional logic program P � which corresponds to
the computation of the semantics of P 	 In this article we consider the �rst order case	 We de�ne a notion
of approximation for interpretations and prove that there exists a ��layered feed forward neural network
that approximates the calculation of TP for a given �rst order acyclic logic program P with an injective
level mapping arbitrarily well	 Extending the feed forward network by recurrent connections we obtain
a recurrent neural network whose iteration approximates the �xed point of TP 	 This result is proven by
taking advantage of the fact that for acyclic logic programs the function TP is a contraction mapping on
a complete metric space de�ned by the interpretations of the program	 Mapping this space to the metric
space IR with Euclidean distance� a real valued function fP can be de�ned which corresponds to TP and
is continuous as well as a contraction	 Consequently it can be approximated by an appropriately chosen
class of feed forward neural networks	

Keywords� Recurrent Neural Networks� Logic Programs� Model Generation� Approximations	
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�� Introduction

Many researchers are convinced that intelligent
agents reason by generating models and deducing
conclusions with respect to these models �see e	g	
�
���	 In real agents the reasoning process itself
is performed by highly recurrent neural networks�
whose precise structure and functionality is still
not very well understood	 Arti�cial neural or con

nectionist networks are just a rather crude model
for such real neural networks	 Nevertheless� they
serve as a reasonable model and have been taken
up by many researchers	 Currently one of the ma

jor open problems in this area is the question of
how the full power of deductive processes can be
implemented on connectionist networks �see e	g	
�����	 In this article we will focus on this prob

lem by establishing a strong link between model
generation in the context of �rst order logic and
recursive arti�cial neural networks	 In particular�
we will show that for a certain class of logic pro

grams the least model of a given program can be
approximated arbitrarily well by a recursive arti

�cial neural network	

Model generation is a well established area
within automated deduction �see e	g	 �
�� ��� �
��	
In particular� the semantics of a logic programP is
often de�ned with the help of a so�called meaning
function TP 	 In many but not all cases a logic pro

gram P admits a least model� which can be com

puted as the least �xed point of TP � and research
is focussed on identifying classes of programs for
which such least models exist	 For these classes
TP e�ectively speci�es a model generation proce

dure	 Examples are the class of de�nite programs
�see e	g	 �
���� where the correspondence between
the least model of P and the least �xed point of
TP can be shown by lattice�theoretic arguments
���� or the class of acceptable programs� where the
just mentioned correspondence can be shown us

ing metric methods ��
�	

It turned out that the computation of the least
model for a logic program from one of the just
mentioned classes can be performed by a recursive
network of binary threshold units if the programs

�This is an extensively revised version of ��	
� A brief sum�
mary of the main results is contained in ��
�
��The author acknowledges support from the German Aca�
demic Exchange Service �DAAD� under grant no� D
	�
�	����

are propositional ����� With each interpretation
I a vector of units is identi�ed such that the jth
unit is active i� the jth propositional variable is
mapped to true by I 	 Two such vectors serve as
input and output layer of a ��layered feed forward
network	 The hidden layer is constructed such
that it contains a unit for each program clause	
Such a unit becomes active as soon as the body of
the clause is satis�ed by the interpretation rep

resented by the activation pattern of the input
layer� and propagates its activation to the unit
in the output layer representing the head of the
clause	 Fig	 � depicts such a network for a small
example	 From its construction follows immedi

ately that such a network computes the applica

tion of TP to an interpretation I 	 Turning this
network into a recursive one by connecting corre

sponding units from the output to the input layer
with weight � allows to compute the least �xed
point of TP for propositional acceptable logic pro

grams	

One should observe that the number of units
and the number of connections in a recursive neu

ral network corresponding to a propositional pro

gram are bounded by O�m � n� and O�m � n�
respectively� where n is the number of clauses
and m is the number of propositional variables
occurring in the program	 Furthermore� the ap

plication of TP to a given interpretation is com

puted in 
 steps	 As the sequential time to com

pute TP is bound by O�n � m� �assuming that
no literal occurs more than once in the conditions
of a clause�� the resulting parallel computational
model is optimal	�

The approach in ���� provides a new compu

tational model for the computation of the least
model of logic programs� which is massively paral

lel and optimal	 Moreover� it establishes a strong
relationship between propositional logic program

ming and recurrent neural networks	 In contrast
to recurrent neural networks logic programs are
well understood	 Hence� this new relationship
may help to gain a better insight into recursive
neural networks� to formally analyze these net

works and to give a declarative semantics for what
these networks are doing	 For example� given
an arbitrary recurrent network of the architecture
shown in Fig	 �� i	e	 a ��layered feed forward net

work with binary threshold units� we can extract
a propositional logic program P such that the net
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Fig� �� A feed forward network of binary threshold units
computing TP for the program P � fA� �B� A� C�D�
D� �E�Fg� The numbers in the units denote thresholds
whereas the numbers at the connections denote weights�
Connections with weight � are not shown�

work actually computes the meaning function of
P 	 Accordingly the extended recurrent network
computes the iteration of the meaning function of
P and� therefore� the semantics of P 	

In ���� it was shown that all results of ���� con

tinue to hold if the threshold units of the hid

den layer are replaced by sigmoidal ones and the
weights on the connections are replaced by real
numbers	 With this replacement powerful learn

ing techniques like backpropagation can be ap

plied to adapt an initially given logic program	 For
example� we can now train the feed forward net

work corresponding to the program with knowl

edge not yet included in the program and given in
form of data examples	 Thereafter� a �hopefully�
improved logic program can be extracted from the
trained network using well�known rule extraction
techniques �see e	g	 ���� ��� 
��	

All results mentioned so far are propositional
in nature	 The logic programs are propositional
ones� but also the rule extraction techniques men

tioned in the previous paragraph generate only
propositional rules	 In fact� most of the research
done so far and aiming at using neural networks
for inferential processes is limited to propositional
inference systems	 This has already been ob


served by McCarthy in ���� �
�� and not much
has changed since	 For example� Pinkas has shown
that �nding a global minima in a Hop�eld network
corresponds to �nding a model of a propositional
logic formula and vice versa ����	 He also showed
that Hop�eld networks can be used to compute the
models of �rst order formulas if these formulas or
parts thereof may not be copied ��
�	 Because it
cannot be determined in advance how many copies
of a formula or parts thereof are needed in a proof
of a �rst order formula� a system may fail to �nd a
proof if the number of copies is restricted	 With

out the ability to copy formulas or parts thereof
the logic is e�ectively propositional	 This holds for
Pinkas� logic but also for SHRUTI ���� and CHCL
����� to mention just a few	

There is an additional problem related to the
complexity of objects that can be handled by
connectionist inference systems	 Systems like
SHRUTI ���� and ROBIN �
�� allow only con

stants	 They cannot handle structured objects at
all	 Systems like CHCL ���� and the one by Pinkas
��
� allow �rst order terms	 But because they do
not allow to copy formulas or parts thereof� their
ability to generate new terms is limited	 Other
proposals like the recursive auto�associative mem

ory ����� its labeled version ���� and holographic
reduced representations ���� allow to represent
structured objects in principle� but extensive tests
revealed that these representations become ex

tremely noisy and e�ectively useless as soon as
more or less complex terms are stored �

�	

Investigations of the computational capabilities
of recursive neural network have led to promising
results about their ability to deal with the more
complex class of �rst order logic programs	 In ����
it has been proven that a recursive neural network
made up of neurons using linear saturation acti

vation functions can simulate an universal Turing
machine	 Other approaches relate recursive neu

ral networks to deterministic �nite state machines
�for �rst order networks see ���� �� ��� for second
order networks see ���� ��� ���� for radial basis
function networks see ������ for iterated function
systems see �
�� 
���	 But as shown for varying
examples �see e	g	 ���� 
��� constraints on the net

work architecture may reduce the computational
power of the considered network and the assess

ment of the computational power of a speci�c ar

chitecture doubtless is of great importance	
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Summing up� we are unaware of a single con

nectionist inference system� whose ability to han

dle structured objects and structure�sensitive pro

cesses comes even close to the degree that is
achieved in conventional� �rst order inference sys

tems	 Consequently� if structured objects and
structure�sensitive processes are to be modeled
in connectionist systems� we should take into ac

count the vast knowledge accumulated in conven

tional systems so far	 One step in this direction
and the step taken herein is to design a truly con

nectionist model for a �rst order inference system	
On the other hand� connectionist systems exhibit
many desirable properties like fault tolerance and
graceful degradation which conventional systems
are lacking	 If these properties are to be pre

served in a connectionist inference system� then
very likely we have to give up correctness and�or
completeness of the inference system	 So we set
ourself the goal to approximate the �correct and
complete� models of a �rst order formula	

More precisely� in this article we deal with the
question whether the neural architecture used in
the case of propositional logic programs ���� is
capable and su�cient for the �rst order case as
well	 Is a ��layered feed forward network capable
of computing the meaning function for a �rst or

der logic program P� Is the corresponding recur

sive network capable of computing or approximat

ing the iteration of the meaning function� What
precisely is the approximation of a meaning func

tion� What precisely is the approximation of the
semantics of a logic program� Can we establish
a relationship between �rst order logic programs
and ��layered recursive networks� How do such
networks look like�

Because in the �rst order case an interpreta

tion may be an in�nite subset of the set of ground
atoms with respect to a given alphabet� the con

struction developed in ���� may lead to in�nite
networks if directly applied to �rst order logic pro

grams	 This is unacceptable in practice� where
we can handle only �nite networks	 On the other
hand� we may use real valued units with sigmoidal
activation functions instead of the binary thresh

old units used in the propositional case	

Feed forward networks with at least one hidden
layer of real valued units with sigmoidal activa

tion function are known to approximate continu

ous real valued functions as well as Borel measur


able functions arbitrarily well ���� 
��	 This gives
rise to the following idea� Can we �nd a real val

ued function fP corresponding to TP such that
these results can be used to approximate fP and�
thereby� TP arbitrarily well� If such a function fP
exists and we �nd a feed forward network approx

imating fP to a desired degree of accuracy� can we
then turn this network into a recurrent one� such
that the recurrent network approximates the least
�xed point of TP arbitrarily well�

In this article we de�ne a class of �rst order
logic programs such that both questions are an

swered positively for this class	 We also discuss
what precisely is denoted by an approximation of
the least model of a �rst order logic program	 For
the �rst time this gives us a strong link between
�rst order model generation and the computation
performed by a recursive neural network	

The remainder of this article is organized as fol

lows	 After stating some preliminaries concerning
logic programs and metric spaces in Section 
� we
state in Section � that the meaning function TP
for a recurrent logic program has a unique �xed
point that can be computed by iterating TP 	 In
Section � we show how to encode the domain of
the meaning function TP into IR	 In Section �
we use this mapping to construct a real valued
function fP corresponding to the function TP 	 In
Section � we show that the real valued function fP
is continuous for a certain class of programs and
that a feed forward network with sigmoidal acti

vation functions and at least one hidden layer can
approximate the function fP 	 Thereafter we show
how to extend the feed forward network to a recur

rent one such that the iteration of fP corresponds
to the iteration of TP and� in fact� approximates
the least �xed point of TP 	 Because in the case of
recurrent programs such a �xed point does always
exist we end up with approximating the semantics
of the logic program P 	 Finally� we discuss our re

sults and point out future work in Section �	 The
formal proofs of our results can be found in the
appendix of the article	

�� Preliminaries

In the following two subsections we brie�y re

call basic notions and notations concerning logic
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programs according to �
�� and metric spaces as
in ��
�	

���� Logic Programs

A logic program P is a collection of �universally
closed� clauses of the form A� L�� � � � � Ln� where
n � �� A is a �rst order atom and Li� � � i � n�
are �rst order literals� i	e	 atoms or negated atoms�
A is called head and L�� � � � � Ln body of a clause	
Each program is assumed to be based on an un

derlying alphabet with a �nite number of func

tion and relation symbols and a countably in�nite
number of variables	 An atom� literal� clause or
program is said to be ground if it does not con

tain an occurrence of a variable	 A program P is
called de�nite if each clause occurring in P con

tains only atoms	 BP denotes the Herbrand base�
i	e	 the set of ground atoms� with respect to the
alphabet underlying P 	 A level mapping for a pro

gram P is a function j j � BP � IN n f�g� where
IN denotes the set of natural numbers	 If jAj � n

we will say the level of the atom A � BP is n	 A
level mapping is extended to literals by de�ning
j�Aj � jAj	

An interpretation is a mapping from ground
atoms to the set f���g of truth values	 As usual
we represent interpretations by the set I � BP of
atoms mapped to �� using such a representation it
is convenient to agree that �A � I i� A �� I 	 In

terpretations are extended to literals� clauses and
programs in the standard way	 A model for P is
an interpretation which maps P to �	 The mean�
ing function TP � 
BP � 
BP is de�ned as fol

lows� Let I be an interpretation and A a ground
atom	 A � TP�I� i� there exists a ground instance
A � L�� � � � � Ln of a clause in P such that for all
� � i � n we �nd Li � I 	

���� Metric Spaces

A metric or distance function on a space M is a
mapping d �M�M� IR�� such that d�x� y� � �
i� x � y� d�x� y� � d�y� x�� and d�x� y� � d�x� z��
d�z� y�� where IR�� denotes the set of non�negative
real numbers	 Let �M� d� be a metric space and
S � s�� s�� � � �� si � M� be a sequence on M	
S converges if 	s � M � 
� � � � 	N � 
n �

N � d�sn� s� � �	 S is Cauchy if 
� � � � 	N �

n�m � N � d�sn� sm� � �	 �M� d� is complete
if every Cauchy sequence converges	 A mapping
f � M � M is a contraction on �M� d� if 	� �

k � � � 
x� y �M � d�f�x�� f�y�� � k � d�x� y�	

Consider a logic program P � a level mapping j j
for P and the set 
BP of interpretations for P 	 A
distance function dP on 
BP associated with j j is
de�ned as follows	 Let I and J be two interpre

tations	 If I � J then dP�I� J� � �	 Otherwise�
dP�I� J� � 
�n� where I and J di�er on some
atom A of level n but agree on all atoms of lower
level	 As shown in ��
� the distance function dP
associated with a level mapping j j for P is a met

ric and the metric space �
BP � dP� is complete	

For complete metric spaces and contraction
mappings the following theorem is well�known�

Theorem �� �Banach Contraction Theorem
����� A contraction mapping f on a complete met�
ric space has a unique �xed point� The sequence
x� f�x�� f�f�x��� � � � converges to this �xed point
for any x�

�� Acyclic Logic Programs

Acyclic logic programs were investigated by Cave

don ���� as well as Apt and Bezem ��� ��	 They
are a subclass of the class of locally strati�ed pro

grams de�ned by Przymusinsky ���� and enjoy sev

eral desirable properties like the fact that for each
acyclic program P the meaning function TP has
a unique �xed point MP � that MP is a minimal
model and the perfect model� of P � and that MP

is the unique Herbrand model of the completion
of P 	� In this paper we will show that acyclic logic
programs exhibit an additional characteristic that
allows to approximate their semantics by a recur

sive neural network	 This is possible because by
using metric methods as proposed by Fitting ��
�
we can show that the meaning function TP for
an acyclic logic program P is a contraction on an
appropriately de�ned complete metric space	

De�nition �� A logic program is called acyclic
with respect to a level mapping j j� if for every
ground instance A� L�� � � � � Ln of a clause in P �


� � i � n � jAj � jLij�
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P is called acyclic if P is acyclic with respect to
some level mapping	

Proposition �� Let P be an acyclic logic pro�
gram with respect to a level mapping j j and dP the
distance function associated with the level map�
ping j j� The meaning function TP is a contraction
on the complete metric space �
BP � dP��

The formal proof of this result and all other
proofs are given in the appendix	 This result was
independently achieved by Seda and Hitzler in
����� who showed that for an even larger class of
programs the meaning function is a contraction	
Seda and Hitzler are interested in relating metric
methods and� in particular� the theory of dynam

ical systems to logic programs �see also �����	 For
the purpose of this paper� viz	 to relate logic pro

grams and recursive neural networks� we concen

trate on acyclic programs	

Applying Theorem � to Proposition � we �nd
that for acyclic logic programs P the meaning
function TP has a unique �xed point and� more

over� this �xed point is reached by iterating TP
starting from any interpretation I � BP 	

�� Mapping Interpretations to Real Num�
bers

Since we are interested in �rst order logic pro

grams� the arguments of the meaning function TP
are interpretations which may consist of a count

ably in�nite number of ground atoms	 As already
mentioned in the introduction the simple solution
for the propositional case as presented in �����
where each ground atom is represented by a bi

nary threshold unit in the input and output layer
is no longer feasible	 To extend the representa

tional capability of our network we use real valued
units with sigmoidal activation functions instead	
Thus interpretations are to be represented by real
numbers	

In this section we de�ne an encoding R of the
domain 
BP of the meaning function TP into IR	
Considering our aim of approximating TP by the
use of a feed forward network� we should make
sure that the encoding of TP in terms of a real
valued function fP is done in a way such that
fP can indeed be approximated	 For example�

if fP would be continuous� then we could apply
the result of ���� that continuous functions can be
approximated arbitrarily well by a feed forward
network	� As we shall see� by restricting ourselves
to a certain class of programs we can ensure that
the function fP encoding TP is continuous	
We start from a level mapping j j � BP � IN

from ground atoms to natural numbers	 We fur

ther require it to be injective� and express this by
renaming it to k k	 This restriction is discussed
further in Section �	 It is straightforward to gener

ate an injective level mapping for a given program
because the set of ground atoms over an alpha

bet with a �nite number of function and predi

cate symbols can be enumerated	 The property
of being an acyclic program is undecidable �see
���� and we conjecture that it is also undecidable
whether a given program is acyclic with respect
to an injective level mapping	
We use the level mapping k k to de�ne a map


ping R from the set 
BP of interpretations for a
logic program P to real numbers�

De�nition �� The mapping R � 
BP � IR is
de�ned as R�I� �

P
A�I �

�kAk	 The set Df �
fr � IR j 	I � 
BP � r � R�I�g is the range of R	

Thus an interpretation I is mapped to the real
number whose n�th digit after the comma in the
quaternary� number system is � if there is an atom
A in I with kAk � n�� and � otherwise	 Observe
that R is monotone� R��� � � and R�
BP � � �

� 	
�

Consequently� the range Df of R is a subset of
��� �� �	

Proposition �� The set Df is a closed subset
of IR�

Consequently� Df with the Euclidean distance
is a complete metric space as well	 To proof this
proposition we make use of a close relation be

tween the metric dP on interpretations and the
Euclidean distance of the corresponding real num

bers�

Proposition �� For two interpretations I� J �

BP the following holds�




�
dP�I� J�

� � jR�I�
R�J�j �
�

�
dP�I� J�

� �
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The requirement of k k to be injective ensures
that R is injective and thus there is an inverse
mapping R��	 This inverse mapping is extended
to a function R�� � IR� 
BP by taking the value
I of the nearest point R�I� for I � 
BP 	 Such a
point exists� because by Proposition 
 the set Df

is closed	 If there are two such points� we take the
lower one	

�� Mapping TP to a Real Valued Function
fP

The encoding R maps the elements of the do

main of TP to real numbers	 Hence� we immedi

ately obtain a function fP on IR such that the ap

plication of fP to a real number r � R�I� encod

ing the interpretation I is equivalent to applying
TP to I � R���r�	 Figure 
 depicts the relation
between TP and fP 	 One should observe that the
encoding R de�ned in De�nition 
 is just an ex

ample for mapping 
BP to IR	 We can use any
mapping which transfers the contraction property
of TP to fP � i	e	 for which fP is a contraction on
the real numbers with the Euclidean distance i�
TP is a contraction on �
BP � dP�	

De�nition �� Let P be a logic program� BP
its Herbrand base and TP the meaning function
associated with P 	 Let R be an encoding of 
BP

in IR and the closed set Df � IR the range of R	
The real valued function �fP corresponding to TP
is de�ned by

�fP � Df � Df � r �� R�TP�R
���r����

The function �fP is extended to a function fP �
IR� IR by linear interpolation�

fP�r� �

������
�����

�fP�r� if r � Df
�fP�min�Df �� if r � min�Df �
�fP�max�Df �� if r � max�Df �
	Mr�r

Mr�mr

�fP�mr� �
	r�mr

Mr�mr

�fP�Mr�

otherwise�

where mr � max�Df � ��� r�� and Mr � min�Df �
�r� ��� are the greatest point of Df below r and
least point of Df above r respectively	

�

�
�

� �

�

I � 
BP I � � 
BP

r � Df r� � Df

TP

�fP

R��R R R��

Fig� �� The relation between TP and �fP �

One should observe that mr and Mr are well�
de�ned because Df is a closed set by Proposition 

and Df���� r� as well as Df��r� �� are intersections
of closed sets and� thus� are also closed	
In order to show that fP is continuous we �rst

prove the following property of fP �

Proposition �� Let P be an acyclic logic pro�
gram with an injective level mapping� TP the
meaning function associated with P and fP the
real valued function corresponding to TP � Then
fP is a contraction on IR� i�e�


r� r� � IR � jfP�r�
 fP�r
��j �

�



jr 
 r�j �

As an immediate consequence of Proposition �
we obtain�

Corollary �� Let P be an acyclic logic program
with an injective level mapping� TP the meaning
function associated with P and fP the real valued
function corresponding to TP � Then fP is contin�
uous�

	� Approximating the Meaning Function
TP

Because fP is a continuous real valued function
we can apply the following theorem stating the
approximation capability of a class of feed forward
networks	

Theorem �� 
��� Let ��x� be a non con�
stant� bounded and monotone increasing continu�
ous function� Let K be a compact subset �bounded
closed subset� of IRn and f�x�� � � � � xn� be a con�
tinuous real valued function on K� Then for an
arbitrary � � �� there exist an integer N and
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real constants ci� �i �i � �� � � � � N�� wij�i �
�� � � � � N� j � �� � � � � n� such that

�f�x�� � � � � xn� �

NX
i��

ci�

�
� nX
j��

wijxj 
 �i

�
A

satis�es

max
�x�K

jf�x�� � � � � xn�
 �f�x�� � � � � xn�j � � �

In other words� for an arbitrary � � �� there
exists a ��layered feed forward network whose
output function for the hidden layer is ��x��
its output functions for input and output layers
are linear and it has an input�output function
�f�x�� � � � � xn� such that

max
�x�K

jf�x�� � � � � xn�
 �f�x�� � � � � xn�j � � �

Applying Theorem 
 to Corollary �� which
states that fP is continuous� we obtain the fol

lowing theorem�

Theorem �� Let P be an acyclic logic program
with an injective level mapping� TP the meaning
function associated with P and fP the continuous
real valued function corresponding to TP � Then
for an arbitrary � � �� there exists a feed forward
network with sigmoidal activation function for the
hidden layer units and linear activation functions
for the input and output layer units computing the
function �fP which satis�es

max
x������


jfP�x� 
 �fP�x�j � � �

This theorem states that given a certain accu

racy we can construct a feed forward network that
approximates fP to this desired degree of accu

racy	 Using the mapping R�� we thereby obtain
a feed forward network capable of approximating
the meaning function TP for an acyclic logic pro

gram P with injective level mapping	 But what
precisely is the approximation of such a meaning
function in terms of interpretations� To answer
this question we �rst present an example and�
thereafter� a formal de�nition in the following sec

tion	


� Approximation of Interpretations

Consider the program

P � p����
p�s�X�� � p�X��

where X is a variable� � a constant� s an unary
function symbol and p an unary predicate symbol	
The level mapping

kp�sn����k � n� �

for n � IN is injective� where s���� � � and
sn����� � s�sn����	 The program P is acyclic
with respect to this level mapping k k	 In this
case we �nd

fP�R�I�� � ��kp	�
k �
P

p	X
�I �
�kp	s	X

k

� ��kp	�
k �
P

p	X
�I �
�	kp	X

k��


� �
� �

�
�R�I� �

One should observe that BP is the least model of
this program and� by the de�nition of R�

R�BP � �
�

�
�

which also happens to be the least �xed point of
fP 	

The iteration of TP � which yields the semantics
of the programP � is approximated by the iteration
of �fP 	 What happens during this iteration� If we
approximate fP to an accuracy � the evaluation
of the approximation �fP yields a value

�fP�x� � �
� � x

�

 ��

� � x

�
� ���

Thus� if x is in the interval �a� b�� the result �fP�x�
is in the interval

�
a
 ����

�

�
�

�
 ��

�
�
b
 ����

�

�
�

� � ��

�
��

Applying this argument again one can observe
that the next iteration will yield a value �f�P�x�
within the interval
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�
a
 ����

�

��
�

�
 ��

�
�
b
 ����

�

��
�

� � ��

�
��

and the k
th iteration �fkP�x� will shrink the inter

val to

�
a
 ����

�

�k
�

�
 ��

�
�
b
 ����

�

�k
�

� � ��

�
��

It is easy to see that in the limit the iteration of
�fP yields a value within

�
�
 ��

�
�
� � ��

�
��

although it does not necessarily converge to a �xed
value within this interval	 If we convert such a
value

r � �
�
 ��

�
�
� � ��

�
�

with R�� back to BP we see that

p�sn���� � R���r�

for n � 
 log� �
�� which coincides with the least
model

fp���� p�s����� p�s�s������ � � �g

of P 	 The values for p�sn���� with n � 
 log� �
�
may di�er from the intended model	
This example clari�es our notion of an approx


imation of an interpretation or a model�

De�nition �� Let P be a logic program and
j j a level mapping for P 	 An interpretation I

approximates an interpretation J to a degree N �
IN with respect to the level mapping j j� if for all
atoms A � BP with jAj � N � A � I i� A � J 	

Equivalently� I approximates J to a degreeN i�
dP�I� J� � 
�N 	 One should observe that in our
example we are not only able to approximate the
results of the calculation of TP but are also able
to approximate the least �xed point of TP �
Unfortunately� not all acyclic logic programs ad


mit an injective level mapping	 Consider for in

stance the logic program

Q � q�a�� p�f�X���

where X is a variable� a a constant� f an unary
function symbol and p as well as q are unary pred

icate symbols	 It is acyclic with respect to the
level mapping� which maps each ground instance
of p�f�X�� to � and q�a� to 
	 But it does not ad

mit an injective level mapping for which TQ is a
contraction because the level of the atom q�a� has
to be greater than the maximum of the level of all
ground instances of p�f�X��� which are in�nitely
many	 So the restriction to acyclic programs that
admit an injective level mapping does not allow to
treat programs that contain clauses with variables
occurring in the body but not in the head of the
clause	

Note� moreover� that the class of acyclic logic
programs contains not only de�nite programs but
negation is allowed and we can handle acyclic pro

grams with negation as well	

�� Iteration of the Approximation �fP

So far we have shown how to approximate the
meaning function TP 	 However� we are mainly
interested in the approximation of the least �xed
point of TP 	 From Theorem � we have learned
that there exits a feed forward network comput

ing �fP � which is the approximation of fP � which
in turn represents TP 	 Given such a feed forward
network we can turn it into a recursive network
by adding recurrent connections with weight � be

tween corresponding units in the output and input
layer of the feed forward network	 Does such a re

cursive network approximate the least �xed point
of TP� Whereas Theorem � tells us the activa

tion value �fP�r� is within � of fP�r� after the �rst
iteration of the recursive network� this small dif

ference could lead to a bigger di�erence in each
step	 Our �nal theorem tells us that this is not
the case with the chosen encoding R�

Theorem �� Let P be an acyclic logic program
with an injective level mapping� TP the meaning
function associated with P and MP the least �xed
point of TP � For an arbitrary N � IN there ex�
ists a recursive network with sigmoidal activation
function for the hidden layer units and linear ac�
tivation functions for the input and output layer
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units computing a function �fP such that there ex�
ists an n� � IN such that for all n � n� and for
all x � �
�� �� the relation

dP �R
��� �fnP�x���MP � � 
�N

holds�

This theorem tells us that for any initial value
x � �
�� �� the interpretation represented by
�fnP�x�� i	e	 the n�fold iteration of the recurrent
network� and the least �xed pointMP of TP agree
in all atoms with a level less than N 	 In other
words� we can approximate the least �xed point of
the meaning function TP of an acyclic logic pro

gram P with an injective level mapping arbitrarily
well with a recurrent neural network	

�� Discussion and Future Work

In ���� we have shown that for each propositional
logic program P there exists a recurrent neural
network computing the semantics of P 	 In this ar

ticle we have extended this result to a class of �rst
order logic programs	 Because of the in�nity of
interpretations in the �rst order case we formally
introduced approximations of interpretations and�
consequently� approximations of the semantics of
logic programs	 We have shown that the meaning
function TP of a logic program P can be approxi

mated arbitrarily well by a ��layered feed forward
network if P is an acyclic logic programs that ad

mits an injective level mapping	 The approxima

tion is computed in two time steps� propagation
from the input to the hidden layer and propaga

tion from the hidden layer to the output layer	
Moreover� by turning the feed forward network
into a recurrent one it was shown that it is also
possible to approximate the least �xed point of
TP � i	e	 the semantics of P � arbitrarily well	
To show that there exists a feed forward net


work that is capable of approximating a real val

ued function corresponding to TP for a given pro

gram we have made use of a theorem given in �����
that states the existence of such a network if the
real valued function is continuous	 However� the
theorem given in ���� �Theorem � in this article�
does not state how the feed forward network looks
like or how it can be constructed	 Neither we got
any clue how to construct a neural network for en


coding or decoding a �rst order interpretation of
a logic program into activation levels of the input
unit	

In other words� whereas our mapping R enables
us to prove the desired theoretical results� it does
not seem to be a practical solution for representing
the interpretations in the process of the iteration
of TP 	 To solve this problem we are searching
for suitable representations for the interpretations
such that the approximation results are still valid	
Obviously the naive solution to construct a net

work with input and output units each represent

ing an atom� i	e	 an element of the Herbrand base
of P � is not suitable because we do not know in
advance which element we will really need to rep

resent	 We have to represent all the atoms of the
Herbrand base� which are in�nitely many in gen

eral	

A more desirable approach is to use �xed�length
distributed descriptions to represent the elements
of our domain	 Models such as the �labeled� re

cursive auto associative memory ���� ��� or holo

graphic reduced representation ���� provide such
representations for term structures and� therefore�
for atoms	 As discussed in �

� however� these
models lack the ability to handle structures of
variable depth and� consequently� are not suitable
for our problem	 The problem of how to distribut

edly represent term structures in such a network
is still unsolved	

If we restrict ourselves to a limited depth of the
terms that can be handled during the computa

tion� then these models can be applied to represent
terms and atoms	 But there is also the additional
problem of how to represent interpretations� i	e	
sets of atoms	 These sets may consist of in�nitely
many elements� and this may happen after a single
application of TP to a �nite interpretation	 This
would already exceed our �nite memory after one
computation step of TP 	 A solution to this prob

lem is to use �nite representations for the in�nite
interpretations occuring in such a computation as
shown in ���	 However� the problem of how this
approach can be realized in a connectionist sys

tem is not yet solved	

Taken all these arguments and open problems
into account our future work will focus on the rep

resentational problem	 Because the theoretical re

sults formulated in this paper state the existence
of a network to approximate the meaning function
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TP � we strongly believe in the existence of such a
representation	

But there is also another line of future research	
The logic programs programs considered in this
article were acyclic and had to admit an injective
level mapping	 These conditions are su�cient� but
it is an open question whether they are necessary
as well	 The condition of being acyclic was used to
show that TP is a contraction on the metric space
�
BP � dP�	 As shown by Seda and Hitzler� acyclic
logic programs are not the largest class that admit

this property ���� ���	 The condition of admitting
an injective level mapping was used to show that
the mapping R is injective	 Both conditions were
used to show our main result� but we expect that
they can be weakened	
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Appendix

Proof of Proposition �� We will show that dP�TP�I�� TP�J�� �
�
� dP�I� J�	 Assume dP �I� J� � 
�n�

so that I and J agree on all ground atoms A with jAj � n	 To show that dP�TP�I�� TP�J�� � 
�	n��
 it
is su�cient to show that TP�I� and TP�J� agree on all ground atoms A with jAj � n� �	
Now suppose that TP�I� and TP�J� disagree on a ground atom A with jAj � n��	 There are two cases

that arise� �a� A � TP�I� and A �� TP�J� and �b� the other way around	 Because case �b� is symmetric
to �a� we omit its proof and concentrate on proving �a��
Because A � TP�I� and A �� TP�J� there is a ground instance A � L�� � � � � Ln of a clause in P such

that fL�� � � � � Lng � I and fL�� � � � � Lng �� J 	 Consequently� there is a literal Lk with k � ��� n� such that
Lk � I and Lk �� J 	 But from the de�nition of acyclic logic programs we know that jAj � jLkj	 This
is a contradiction to our assumption that I and J agree on all atoms with a level less than n� so the
proposition is established	

To improve the intelligibility of the article� Proposition 
 was presented before Proposition �	 The
proofs are presented in inverted order because the proof of Proposition 
 depends on Proposition �	

Proof of Proposition �� Let n be the lowest level of an atom for which the interpretations I and J

disagree	 Thus dP�I� J� � 
�n and hence dP �I� J�
� � ��n	

Since all atoms A with level kAk � n are mapped to the same truth value by I and J it follows from
the de�nition of R that

��n 

�X

i�n��

��i � jR�I�
R�J�j � ��n �
�X

i�n��

��i �

which yields �
� � �

�n � jR�I�
R�J�j � �
� � �

�n and hence the proposition holds	

Proof of Proposition �� To prove that the set Df is closed we prove that the limits of sequences of
elements of Df are contained in Df 	
Let R � r�� r�� � � �� ri � Df be a convergent sequence on IR and r � lim

i��
ri the limit r � IR of

this sequence	 Since IR with Euclidean distance is a complete metric space� R is Cauchy	 Consider
now the sequence of interpretations I � I�� I�� � � � such that Ii � R���ri�	 This sequence is Cauchy as
well� since R is Cauchy� for every � � � there is an N � IN such that for every n�m � N we have
jR�In�
R�Im�j � jrn 
 rmj �

�
��

�� and thus� according to Proposition �� dP�In� Im� � �	 Consequently�
I is convergent because �
BP � dP� is a complete metric space	
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Let I be the limit of I	 R�I� is now the limit of R� for every � � � there is an N � IN such that for all

n � N we have that dP�In� I� �
q

�
�� and thus� according to Proposition �� jrn
rj � jR�In�
R�I�j � �	

Since r � R�I� we have that r � Df � and thus the proposition follows	

Proof of Proposition �� We distinguish four cases with respect to r and r��


i� r� r� � Df �
Let I � R���r� and I � � R���r��	 From Proposition � and since I� I � � 
BP it follows




�
dP�I� I

��� � jR�I�
R�I ��j � jr 
 r�j �A��

and

jfP�r� 
 fP�r
��j � jR�TP�I��
R�TP�I

���j �
�

�
dP�TP�I�� TP�I

���� � �A
�

Since according to the proof of Proposition � TP is a contraction� i	e	 dP�TP�I�� TP�I
��� � dP�I� I

���
and by the de�nition of dP � dP�TP�I�� TP�I

��� � �
�dP �I� I

�� we conclude dP �TP�I�� TP�I
���� �

�
�dP �I� I

���	 The proposition follows immediately using �A�� and �A
�	

ii� r �� Df � r

� � Df �
According to De�nition � we have to distinguish three cases�

iia� r � max�Df �� We can apply case �i� to show

jfP�max�Df ��
 fP�r
��j �

�



jmax�Df �
 r�j � �A��

Because r� � max�Df � � r we have fP�r� � fP�max�Df �� and jmax�Df �
 r�j � jr
 r�j and thus
the proposition follows	


iib� r � min�Df �� The proof of this case is similar to the previous case	

iic� min�Df � � r � max�Df ��

In the following we use the abbreviations SM � Mr�r
Mr�mr

and Sm � r�mr

Mr�mr

	 According to De�ni

tion � we have

fP�r� � SM �fP�mr� � Sm �fP�Mr� �A��

where mr � max�Df � ��� r�� and Mr � min�Df � �r� ���	 Because of mr�Mr� r
� � Df we can apply

case �i� and �nd that

jfP�mr�
 fP�r
��j �

�



jmr 
 r�j and jfP�Mr�
 fP�r

��j �
�



jMr 
 r�j � �A��

Thus� we have

SM jfP�mr�
 fP�r
��j� Sm jfP�Mr�
 fP�r

��j �
�



�Sm jmr 
 r�j� SM jMr 
 r�j� � �A��

Since SM �Sm � � as well as the triangle inequality hold� the left side of �A�� is greater or equal
to

j SM �fP�mr� � Sm �fP�Mr�
 fP�r
�� j � jfP�r� 
 fP�r

��j

Furthermore� r� cannot lie in the interval �mr�Mr� because r
� � Df 	 Thus� the right side of �A��

is equal to

�



j SMmr � SmMr 
 r� j �

�



jr 
 r�j �

and thus the proposition follows	
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iii� r � Df � r
� �� Df �

In analogy to case �ii�	

iv� r �� Df � r

� �� Df �
The proof of this case is almost identical to the case �ii� except that we apply case�iii� instead of
case�i� to establish �A�� and �A��	 We have to split a fourth sub
case o� the sub
case corresponding
to �iic�� though� If r� is in the interval �mr�Mr� then we �nd that mr � mr� and Mr � Mr� and
therefore

fP�r� �
r 
mr

Mr 
mr

fP�Mr� �
Mr 
 r

Mr 
mr

fP�mr� �A��

and

fP�r
�� �

r� 
mr

Mr 
mr

fP�Mr� �
Mr 
 r�

Mr 
mr

fP�mr� � �A��

Consequently� we have

jfP�r
��
 fP�r�j � j

r� 
 r

Mr 
mr

fP�Mr�

r� 
 r

Mr 
mr

fP�mr� j � j �r� 
 r�
fP �Mr�
 fP�mr�

Mr 
mr

j � �A��

Since we can apply case �i� to establish jfP�Mr� 
 fP�mr�j �
�
� jMr 
mrj � the proposition follows

from �A��	

Proof of Theorem ��
Let fP be the continuous real valued function corresponding to TP 	 According to Theorem � there

exists an feed forward network computing the function �fP which satis�es

max
r������


jfP�r� 
 �fP�r�j � � �A���

with � � �
����N�� 	 If we connect the input and output unit using a connection with weight �� and start

with an initial activation x � �
�� ��� we obtain a recursive network which computes �fnP�x� in the n�th
step	
Let M be the unique �xed point of TP 	 We prove now by induction that for every n � IN

j �fnP�x�
 R�M�j �
�


n
� 
� � �A���

Since both the value of R�M� and �f�P�x� � x are within the interval �
�� �� we have that

j �f�P�x�
R�M�j � � � 
�	 Thus� �A��� is ful�lled for n � �	

Let the induction hypothesis be true for n
�� that is� j �fn��P �x�
R�M�j � �
�n���
�	 From Proposition �

follows

jfP� �f
n��
P �x�� 
 fP�R�M��j �

�




�
�


n��
� 
�

�
�

�


n
� � �

Considering fP�R�M�� � R�M� and �A��� we get j �fP� �f
n��
P �x��
R�M�j � �

�n �
� using the triangle
inequality	 By the induction principle� we thus have �A��� for all n � IN	
Let n� � 
N � 
� n � n� and recall that � � �

����N�� 	 By �A��� we get

j �fnP�x� 
R�M�j �
�


n
�

�

� � 
�N��
�

�


�N��
�

�

� � 
�N��
�

�

� � �N
�

Because of the de�nition of R�� the inequality jR�R��� �fnP�x��� 

�fnP�x�j � jR�M�
 �fnP�x�j holds	 �The

nearest point to �fnP�x� in Df cannot be further away than R�M� � Df 	� By the triangle inequality we
get

jR�R��� �fnP�x��� 
R�M�j � 
 j �fnP�x� 
R�M�j �



� � �N
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and by the application of Proposition � the theorem follows	

Notes

�� A parallel computational model requiring p�n� proces�
sors and t�n� time to a solve a problem of size n is
optimal if p�n� � t�n� � O�T �n��� where T �n� is the
sequential time to solve this problem�

�� Under the name of ��locally hierarchical programs�

�� See ���
 for a de�nition of perfect models�

�� See ���
 for a de�nition of the completion of a logic
program�

�� In this article we do not use the more general result
of ���
 that a feed forward network can approximate
Borel�measurable arbitrarily well because the notion of
approximation in ���
 includes only almost all points of
the domain of the function instead of all points� as in
the case of ���
�

�� The obvious choice of the binary number system does
not work because of the ambiguity ������ � � � � �
������� � � � �� Additionally� the quaternary number sys�
tem ensures fP being a contraction �see Proposition ���

�� There is at most one such atom because k k is injective�

�� The quaternary representation of �

�
is ��������� � � ���
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