
Reasoning about Complex Actions�

Ste�en H�olldobler and Hans�Peter St�orr

Arti�cial Intelligence Institute

Dresden University of Technology

D������ Dresden

Germany

Email� fsh�hapsg�inf	tu
dresden	de

Abstract

Many problems addressed within the �eld of Cognitive Robotics and

related areas can only be solved by complex plans including conditional

and recursive actions as well as non�deterministic choice operators	 In

this paper we present a planning language which allows for the speci

�cation of complex plans	 We de�ne its semantics and give a provably

complete and correct completed equational logic program with an uni

�cation complete equational theory	 The approach is independent of

the representation of states� they may be sets of propositional �uents

as in the situation calculus or multisets of resources as in the �uent

calculus	 Finally� we give an instantiation within the �uent calculus	

� Introduction

Imagine an autonomous agent performing a task in the real world� Its
performance is based on an internal plan� From a low level point of view� the
world is its own representation and the actions of the aforementioned plan
are simple commands controlling the e�ectors of the agent� At a higher level
of abstraction� the world is internally represented by states and �primitive�
actions are transformations on the space of states� In this paper we do not
want to discuss how actions on the higher level lead to commands on the
lower level or whether the abstract level is needed or not� although these
are very interesting and active open research problems� We also do not
want to deal with another burning question of how the agent got hold of its

�A version of this paper was presented on the Action and Causality track of the NM���
Workshop�

�

plan� The plan may be given to it by a programmer� it may have �semi�
�automatically generated the plan from the initial state� the goal state and
the descriptions of the primitive actions it is able to perform or it may have
learned it from examples� For the purpose of this paper we just assume that
a plan at the abstract level is given�

But how should such a plan look like� In most studies performed so
far� such a plan is simply a sequence of so�called primitive actions� which
transform one state into another� For example� in the blocks world a simple
plan may be used to stack all blocks into a tower� In such a plan the sequence
in which the blocks are stacked is often 	xed� E�g�� if block a� b and c are
on the table� then the plan
stack block b on top of a and stack block c

on top of b � leads to the desired tower� This plan� however� cannot be used
if there is a di�erent number of blocks on the table� Moreover� the plan is
unnecessarily precise� because the sequence of blocks is not important if we
are just interested in building a tower of all blocks� Intuitively� we would
like to add another layer of abstraction� We would like to abstract from the
sequence of blocks used and from the number of available blocks� However�
this involves more complex actions� viz� non�deterministic choice operators
and recursive actions�

More formally� the question addressed in this paper is whether the exe�
cution of a given plan p in a given initial situation s yields a given goal g �
Thereby the fact that the execution of p in s leads to the ful	llment of g

should be a logical consequence of an appropriate axiomatization of situa�
tions� actions and causality �see ��� ����� This problem was extensively stud�
ied for simple plans consisting of sequences or partial orderings of primitive
actions �e�g� ���� ���� However less attention was given to complex plans in�
cluding conditional and recursive actions as well as non�deterministic choice
operators �see Section
Relation to Other Approaches����

This paper is organized as follows� First� we demonstrate the need for
complex plans by a simple example� the omelette baking problem� Then� we
present the planning language used in this paper as well as its semantics�
Thereafter� we discuss and formally de	ne the notions of executability� cor�
rectness and termination of plans� A formalization of complex plans by a
completed equational logic program with an uni	cation complete equational
theory is given� Up to this point the whole approach is developed indepen�
dently of a concrete representation of states� We instantiate our approach
by specifying states as multisets of �uents� This leads to a formalization of
reasoning about complex plans in the �uent calculus ���� Finally� we relate
our solution to other approaches known from the literature and discuss some
open problems and outline future research�

�

� The Omelette Baking Problem

A cook has a �nite supply of eggs� at least one of which is good� and a saucer�

He can break an egg into the saucer� can smell at the saucer to determine

whether the egg is good and can empty the saucer into the sink� His goal is

to have a good egg in the saucer and nothing else� This is simpli	ed version
of a problem presented in ����

For several reasons a simple plan cannot solve this problem�

� The action of breaking the egg is non�deterministic in that the cook
does not know in advance whether the egg is good� and consequently
has to react on the outcome of the action�

� The cook does not know in advance how may eggs he has to break
before the 	rst good one is in the saucer� In other words� he does not
know in advance how many break and throw away actions he has to
perform�

However� a complex plan can give an apparently straightforward solution�

egg�saucer

where

egg�saucer � break � if �badegg � emptysc � egg�saucer � ���

���

Intuitively� the action egg�saucer is a recursive procedure� whose body
consists of the simple action break � representing the breaking of an egg�
followed by a conditional action� Within the condition badegg the egg
is tested to see if is bad and depending on the outcome either the saucer
is emptied � emptysc � followed by a recursive call to egg�saucer or the
procedure terminates with the empty plan � �

� A Complex Planning Language

We now give a formal description of syntax and semantics of a language
for complex plans which allows for conditional execution of plans� recursion
and the choice of objects as parameters for actions� while at the same time
minimizing complexity�

We intend to formalize reasoning about complex plans in a model� where
states are snapshots of the universe at a given moment and actions are the
only means to change from one state to another �see ��� ����� For the
purpose of this paper we abstract from a speci	c representation of states�

�

For example� states could be sets of propositional �uents as in the situation
calculus or multisets of resources as in the �uent calculus�

Let S be the set of states� A be a set of parameterized action names
denoting primitive actions� C a set of parameterized condition names de�
noting Conditions and H be a set of parameterized procedure heads� Now
we are ready to introduce the set P of complex plans� whose elements p

are de	ned by the following expression in BNF�

p � � j a� p j if �c� p� p�� p j h� p
where � is the concatenation operator

� is the empty plan�
a is a primitive action�
if is a conditional�
c is a condition and
h is the head of a procedure de	nition�

A complex plan may be augmented by procedures� which are described by
expressions of the form

h
c
� p

where h is the head of a procedure de	nition�
c is a condition and
p is a complex plan�

Let D denote the set of procedure de	nitions an agent uses for the descrip�
tion of his plan�

One should observe that the last action in each plan is � � For notational
convenience we often omit this occurrence of � � We also omit the condition
c in a procedure de	nition if c denotes a tautology�

The meaning of a primitive action a � A is given by a set of triples of
the form hs� a� s�i � where fs� s�g � S � The set of such triples is denoted
by E � Intuitively� hs� a� s�i denotes that action a transforms state s into
state s� �

Similarly� the meaning of the conditions is given by a set V of pairs
hc� si � where s � S � c � C � hc� si denotes that condition c holds in state
s �

The stepwise execution of a plan p in a state s is de	ned by the following

�

transformation �� S � P � S � P �

�s� a� p�� �s�� p� if hs� a� s�i � E �
�s� if �c� p�� p��� p�� �s� app �p�� p�� if hc� si � V�
�s� if �c� p�� p��� p�� �s� app �p�� p�� if hc� si �� V�

�s� h� p�� �s� app �p��� p�� if �h�� � � h�
c
� p� � D �

h � h�� � hc�� si � V�

where app appends complex plans and � denotes a substitution�
One should observe that the de	nition of � allows several forms of

non�determinism�

� E may contain triples of the form hs� a� s�i and hs� a� s�i � where
s� �� s� � E�g�� this allows the speci	cation of a break action which
requires an egg as a condition and yields non�deterministically either
a good or a bad egg in the saucer�

� In the execution of a procedure the condition may be used as a non�
deterministic choice operator� which chooses one object out of all ob�
jects satisfying this condition�� For example� consider the procedure

�llbox �x�
ontable�y�
� putin �y� x�� if �full �x�� ���llbox �x�� �

used to 	ll a box x with blocks y standing on a table� While executing
the plan �llbox �a� in a state where the blocks b�� � � � � bn are on the
table� the sequence in which the blocks are selected is not determined�
since the substitution � used in the de	nition of � may be any sub�
stitution which binds x to a and y to some block bi � i � f�� � � � � ng �
on the table� thus satisfying the choice operator ontable�y� �

Because of these non�determinisms the execution of a complex plan can
sometimes take one of several execution paths� Formally� these paths are
represented by derivations wrt � � Derivations and their length are de	ned
as usual� A derivation ��si� pi��

n
i�� wrt � terminates if pn � � � It fails if

pn �� � and there is no �sn��� pn��� such that �sn� pn�� �sn��� pn��� �

� This is similar to the ��x�� construct of Golog ����

�

� Executability� Correctness and Termination of

Plans

Returning to the initial question posed in the introduction we consider an
initial state s� and a complex plan p� � Furthermore� let g be a predicate
over states which represents the conditions that should be satis	ed in a goal
state� Several questions arise immediately�

� When is p� executable in s� �

� Does p� terminate if it is executed in s� �

� Is p� correct�

A short re�ection reveals that the questions are ill�posed without further
considerations� What precisely is meant by executability� termination and
correctness of plans� Since complex plans may contain non�deterministic
actions and choice operators� the precise de	nition of these notions depends
on the risks an agent is willing to take�

From the viewpoint of a sceptical agent who takes no risks� all possible
derivations ��si� pi��

n
i�� are to be considered� A plan p� is executable in

state s� i� no derivation ��si� pi��
n
i�� wrt � fails� It terminates i� there is

an upper bound for the length of possible derivations� It is correct wrt the
condition g i� for all terminating derivations ��si� pi��

n
i�� the condition g

holds in sn �
To express these properties we introduce a relation �

�

��
�

� on S � P �

IN��S	f
g� which describes the complete execution of the program under
a limited number of steps� It expresses successful execution�

s�
p�
��
m

sn with sn � S holds i� there is a terminating derivation ��si� pi��
n
i��

of length n � m�

and it expresses failure as well�

s�
p�
��
m

 holds i� there exists a derivation ��si� pi��
n
i�� which either fails or

is of length n � m �
Using this relation� we establish the following proposition�

Proposition �� A complex plan p� � P is executable in a state s� � S �

terminates and is correct wrt� the condition g i�

�m � IN sg � �S 	 f
g�
h
s�

p�
��
m

sg � sg ��
 � g�sg�
i
�

�The proof is straightforward by case analysis��

�

� A Logical Formalization of Complex Plans

Let T be a representation of states as terms and �� be a mapping from S
to T assigning to each state its term representation�� Furthermore� assume
that conditions are represented as terms and let the predicate holds �c� s�
denote the fact that the condition c holds in the state s and let goalstate �s�
represent the goal g of the planning problem� Let �D be a set of 	rst order
formulas such that the following holds�

�D j� s�� � s�� i� s� � s�
�D j� causes �s�� � a� s

�
�� i� hs�� a� s�i � E

�D j� holds �c� s� � i� hc� si � V
�D j� goalstate �s� � i� g�s� holds�

In addition� �D is assumed to be consistent and complete� i�e��

�D �j� causes �s�� � a� s
�
�� i� �D j� �causes �s�� � a� s

�
��

�D �j� holds �c� s� � i� �D j� �holds �c� s� �
�D �j� goalstate �s� � i� �D j� �goalstate �s� ��

�D should contain an uni	cation complete equational theory� � thus

�D �j� s�� � s�� i� �D j� s�� �� s�� �

Furthermore� �D should not contain any of the predicate symbols app �
proc � world � continuable � doplan � planfails � and natnum � which will
be used in the following to model the execution of plans�

�D can be speci	ed in detail as soon as we have committed ourselves to
the representation of states� Since our planning language and its semantics
is indi�erent to this commitment� we have just given conditions for �D �
In the following section we instantiate our approach within the �uent cal�
culus by using multisets of �uents to represent states� the mapping �� and
the concrete �D are given there� For the moment we concentrate on the
formalization of complex plans�

Plans are concatenated with the help of a ternary predicate app as
usual�

app ��� p� p�

app � h� t � p� h� t� �� app �t� p� t���
���

� The term representation of a state may be either a term describing the history of the
present state	 as in the situation calculus	 or a direct representation of the state	 as in
the
uent calculus �see next section��

� In the case of the
uent calculus �see below�	 an E�uni�cation complete equational theory�

�

The set D of procedure de	nitions is represented by a ternary predicate
proc �

proc �h� c� b�� for h
c
� b � D ���

The transformation � is represented by the predicate world �

world �s�� h� t � s�� t�� causes �s�� h� s���

world �s� if �h� p� p��� t � s� t��� holds �h� s�� app �p� t� t���

world �s� if �h� p� p��� t � s� t��� �holds �h� s�� app �p�� t� t���

world �s� h� t � s� t��� proc �h� c� b��holds �c� s�� app �b� t� t���

���

The predicate continuable describes the possibility to continue the ex�
ecution of a plan p in a state s �

continuable �s� p�� world �s� p� s�� p��� ���

Derivations are represented with the help of the predicate doplan �

denotes that a plan has failed� is a constant denoting the number zero
and s is a unary function representing the successor function on natural
numbers� The predicate doplan �s�� � p

�
� � s

m��� s�n� is true i� there exists
either a terminating derivation

�
�si� pi�

�n
i��

of length n � m � or sn �

and there exists a failing derivation or a derivation of a length greater n �
i�e� i� s�

p�
��
m

sn �

doplan �s�� �� n� s���

doplan �s�� p� �
� � p �� ��

doplan �s�� p�� s�n�� sn�� p� �� ��world �s�� p�� s�� p���

doplan �s�� p�� n� sn��

doplan �s�� p�� s�n��
�� p� �� ���continuable �s�� p���

���

A plan fails� i� it may lead to a state that is not a goal state�

planfails �s�� p�� n� sn�� doplan �s�� p�� n� sn���goalstate �sn�� ���

The natural numbers are represented by the predicate natnum sup�
ported by the uni	cation complete equational theory contained in �D � �

natnum ���

natnum �s�n��� natnum �n��
���

� Induction axioms are not necessary for our purpose more comments on that are given
in the discussion�

�

Now let

� � �D 	Comp�f���� ���� ���� ���� ���� ���g�

be our axiomatization of complex plans� where Comp denotes the Clark
completion �see e�g������ The following proposition states that � is correct
and complete� Recall that g is a predicate over states denoting the condition
to be satis	ed in the 	nal state�

Proposition �� p� is executable in s� � terminates and is correct wrt g

i� there exists an n � IN such that

� j� sg �doplan �s�� � t
�
� � s

n��� sg�� sg ��
� g�sg�� �

Sketch of proof� 	 First� one can be prove by induction over the structure
of plans that the predicate app models the concatenation of plans� Sec�
ond� proc �h� c� b� is implied by � i� it represents ground instantiations of
procedures h

c
� b in D � Based on these lemmata one can prove by case

analysis that world represents the execution relation � �

s�� s� � S� p�� p� � P

�s�� p�� � �s�� p�� i� � j� world �s�� � p�� s
�
� � p���

Induction over n shows that doplan represents the execution relation
�

�

��
�

� �

s� � S� p� � P� sg � �S 	 f
g�

s�
p�
��
n

sg i� � j� doplan �s�� � p� s
n��� s�g��

Considering proposition � at this point leads to the proof of our propo�
sition�

In order to reason about plans we use the predicate planfails as in the
following theorem�

Theorem �� p� is executable in s� � terminates and is correct wrt the goal

condition encoded by the predicate goalstate i�

� j� �n natnum �n� � �planfails �s�� � p
�
� � n��

�The proof is straightforward by case analysis��

� The full proof can be obtained along the lines presented in in �����

�

� A Fluent Calculus Formalization of the

Omelette Problem

The formalization presented in the previous section is independent of the rep�
resentation of states and actions� In order to completely solve the omelette
baking problem� we have to choose an appropriate representation� We opt
for the �uent calculus ���� a purely 	rst order formalization� in which the
frame problem is solved without the need to state any frame axioms or laws
of inertia�

Within the �uent calculus� a state is a multiset of �uents� Fluents
are represented by 	rst order terms f�� � � � � fn � which contain no occur�
rence of the symbols � and � � Hence� a state is a multiset of the form
�f f�� � � � � fn �g �
 Multisets of �uents are represented with the help of a bi�
nary function symbol � which is written in	x and satis	es the equational
theory AC�� which consists of the equations

x � �y � z� � �x � y� � z �associativity�
x � y � y � x �commutativity�
x � � � x �unit element�

together with the axioms of equality� In order to reason about negated
equalities� this theory is turned into a so�called uni	cation complete theory
AC� � � AC� � is then built into the uni	cation computation and SLDENF�
resolution can be used to determine whether a query follows from a normal
logic program �see ����� There is a straightforward mapping �� from mul�
tisets of �uents to their corresponding term representations� Let M be a
multiset of terms� then

M� �

�
� if M � �� �

f �M�
� if M � �ff �g �	M� �

Actions are represented in the �uent calculus with the help of a frame
assumptions� Consequently� each triple in E is represented by a ternary
predicate action � whose arguments encode the condition� the name and the
e�ect of the action� Condition and e�ect are multisets of those �uents� which
are a�ected by the action� For example� in the omelette baking problem the

� The symbols used to denote sets and the usual operations on sets are also used here to
denote multisets and the operations de�ned on multisets	 but we stack a � on top of
them�

�

actions are represented by

action � �break � ��

action � �break � ��

action � � emptysc � ���

action � � emptysc � ���

���

where and represent a good and a bad egg in the supply� and and
represent a good and a bad egg in the saucer respectively�
The predicates causes and holds can now be represented by the clauses

causes �c � r� a� e � r�� action �c� a� e�� ���

and

holds ��� s��

holds �badegg � � s��
����

respectively� where the constant � represents the truth value
true��
The procedure egg�saucer � as de	ned in ���� is represented by the fol�

lowing clause�

proc �egg�saucer ���break � if �badegg � emptysc � egg�saucer � ���� ����

To represent the goal we use the auxiliary predicate ac�match �m� s� �
which is true i� s contains m �

ac�match �m� s�� s � m � r� ����

The actual goal is that there is a good egg in the saucer� and no bad
one�

goalstate �s�� ac�match � � s���ac�match � � s�� ����

Now let

� � AC��	Comp�f���� ���� ���� ���� ���� ���� ���� ���� ����� ����� ����� ����g�

be our �uent calculus formalization of the omelette baking problem� It is
straightforward to verify that

s
�
doplan � � � � � egg�saucer � s�
��� s�

�

s �� � � �s��s � � s�� � ��s���s � � s���
�

��

is a logical consequence of � � and thus

�n natnum �n� � �planfails � � � � � egg�saucer � n��

as well� �An upper bound for the number of steps in the derivation can
easily be given as the number of available eggs times the number of steps
required for one execution of egg�saucer ��

There is a straightforward implementation of � in Prolog by computing
with the clause form of the de	nitions and using SLDENF�resolution� In
fact� by checking carefully the cases� where equational reasoning is really
needed� and giving a Prolog predicate for computing AC��uni	ers� SLDNF�
resolution can be used� The Prolog program is given in the Appendix�

� Relation to Other Approaches

There is a number of other approaches to the problem of reasoning about
complex plans� The work of Manna and Waldinger ��� is in a sense quite
uncompromising� They establish a very complex plan theory whose main
purpose is the ability to represent complex plans as terms� thus enabling
generation of plans from the constructive proof of a logical formula stating
the existence of a plan�� To be able to prove termination� this approach uses
	rst order logic augmented by well�founded induction� Unfortunately� their
formalism seems to be much too complex to be of practical use�

Stephan and Biundo ���� ��� use variants of a modal logic DL for the
interactive generation of recursive plans� They focus on the generation of
recursive plans by re	nement of domain speci	c plan schemata with the help
of the interactive theorem prover KIV�

A close relation exists to the situation calculus based Golog language
de	ned by Levesque et al� ���� The core idea of Golog is to give the
user a means of specifying high level programs� which is translated into a
second order logic formula� A proof of this formula in conjunction with a
speci	cation of the environment yields an action sequence� which can be
executed by the agent�

Our approach avoids the use of second order constructs for two reasons�

� The procedure de	nitions are translated into clauses of the logical
formulas instead of being terms as in ���� With this translation one

� A further reason for the high complexity seems to be the use of the situation calculus�
a large part of the plan theory is used to bind plan terms to speci�c situations during
the execution of a plan by introducing the extra situation argument�

��

loses the possibility of quanti	cation over procedure de	nitions and
thus it is impossible to generate plans by proving a formula stating
the existence of a plan� On the other hand� this avoids of complexity
in comparison to ��� and avoids the use of second order formulas as in
��� for this purpose�

� For the sceptical agent� who wants to know in advance that the plan
execution terminates after n steps� it is su�cient to use the n �th
approximation of the transitive closure of the � relation describing
the stepwise execution of the plan� With the use of a uni	cation
complete equational theory this is 	rst order de	nable in contrast to
the use of the full transitive closure� Note however that it is not
possible in our approach to prove that the plan does not terminate if
it contains a loop� This would require proving that the plan fails for
all limits n � IN of the execution length and thus require induction�

In contrast to the above�mentioned formalisms� our approach can cope
with the issues which arise out of non�determinism�

Recently� White translated Golog into an extended linear logic �����
While the transformation seems to be quite straightforward� the variant of
linear logic used by White is non�standard� On the other hand� there is a
close relation between the �uent calculus and linear logic as formally shown
in ���� Since the �uent calculus admits a standard and well understood
semantics it seems to be preferable to the corresponding fragments of linear
logic�

� Open Problems and Future Research

We intend to use the planning language presented in this paper to program
autonomous robots� In order to do so we have to solve a variety of open
problems�

Actions like break or emptysc have to be translated into control com�
mands for the e�ectors of the robot� On the other hand� the e�ectors of
such an autonomous agent should not just receive commands from a high
level planning language� Many tasks such as moving along a line should
be performed within a low level circuit connecting the robots sensors to its
e�ectors� But where precisely is the borderline between a so�called re�exive
and a so�called deliberative behavior and how precisely do the two levels
interact� Here we expect that we can learn from discrete control theory if

��

we discover connections between this theory and reasoning about situations�
actions and causality�

In a real environment the execution of an action may not lead to the ex�
pected e�ect� Constant monitoring based on an agent�s sensors is required to
determine states in which the plan must be modi	ed or where replanning is
needed� What precisely should a robot do if it observes an unexpected state
change in the middle of a plan execution� First solutions to this problem
were presented in ���� The problem itself is not trivial and good solutions
depend very likely on speci	c domains since from a theoretical point of view
replanning is as complex as planning in the worst case� Moreover� what
should the robot do if the unexpected change of the state involves some sort
of concept the robot is unaware of� For example� the robot may be trained
to behave in the blocks world� While moving around a block� the block slips
out of the robot�s arm� hits the ground and breaks into three parts� What
should the robot do if it has never learned anything about broken blocks�

An approach to this problem can be found in ��� which proposes an
architecture for detecting the �unusualness� of an event on the basis of
distinctions between model�based anticipations and actual reality� Although
this work only touches on the problem of concept creation� it does provides a
mechanism which enables a robot to detect that none of its current concepts
are su�cient and it therefore needs to discover new ones�

Related to the problem of unexpected changes �
miracles�� is the prob�
lem of conceivable but improbable outcomes �
surprises��� The concept of
a sceptical agent used in this paper seems too strong in a real world setting�
If it was not known in the omelette baking problem that there is at least
a good egg� there would be no plan which satis	es the cook as a sceptical
agent� He would have to consider in advance going to a store to buy eggs�
and because it is possible that there are no eggs in the store he would have
to consider going to a farm � � � ad in	nitum� A cook as a brave agent would
just break the eggs� and if they are no good� he would start planning again�

The complex plans considered in this paper are given by the user� In
future we would like to see an automated reasoning system generating or
synthesizing these plans either from examples or from a given speci	cation�
The synthesis of recursive plans is still a wide open 	eld to be addressed in
the future�

The use of SLDENF poses some problems as well� The SLDENF deriva�
tion tree may contain massive redundancy in some cases� For instance if a
box is to be 	lled with blocks on the table the derivation tree would contain
branches for every sequence of blocks put into the box� But the actual se�
quence of blocks is unimportant for the box to be full after the execution of

��

the plan� The use of lemmata or reduction rules in such a case might help�

	 Acknowledgements

The authors would like to thank Michael Thielscher and the anonymous
referees of ESSLLI and of the NMR��� workshop for their valuable comments
on earlier versions of this paper�

References

��� G� De Giacomo� R� Reiter� and M� Soutchanski� Execution monitoring
of high�level robot programs� In Common Sense ���� The Fourth Sym�

posium on Logical Formalizations of Commonsense Reasoning� pages
�������� University of London� ����� Queen Mary and West	eld Col�
lege�

��� G� Gro e� S� H!olldobler� and J� Schneeberger� Linear deductive plan�
ning� Journal of Logic and Computation� ������������� �����

��� S� H!olldobler and J� Schneeberger� A new deductive approach to plan�
ning� New Generation Computing� ���������� ���� A short version
appeared in the Proceedings of the German Workshop on Arti	cial In�
telligence� Informatik Fachberichte �	
� pages ������ �����

��� S� H!olldobler and M� Thielscher� Computing change and speci	city
with equational logic programs� Annals of Mathematics and Arti�cial

Intelligence� ���������� �����

��� Catriona M� Kennedy� A conceptual foundation for autonomous learn�
ing in unforeseen situations� Technical Report WV������ Computer
Science Department� Dresden University of Technology� ����� �forth�
coming��

��� Hector J� Levesque� What is planning in the presence of sensing� Tech�
nical report� Department of Computer Science� University of Toronto�
Canada� ����� email� hector�cs�toronto�edu�

��� Hector J� Levesque� Raymond Reiter� Yves Lesp"erance� Fangzehn Lin�
and Richard B� Scherl� Golog� a logic programming language for dy�
namic domains� Journal of Logic Programming� ����������� �����

��� J� W� Lloyd� Foundations of Logic Programming� Springer� �����

��

��� Zohar Manna and Richard Waldinger� How to clear a block� A theory
of plans� Journal of Automated Reasoning� ������������� �����

��� J� McCarthy� Situations and actions and causal laws� Stanford Arti	cial
Intelligence Project� Memo �� �����

���� J� McCarthy and P� J� Hayes� Some philosophical problems from the
standpoint of Arti	cial Intelligence� In B� Meltzer and D� Michie� ed�
itors� Machine Intelligence �� pages ��� � ��� Edinburgh University
Press� �����

���� R� Reiter� The frame problem in the situation calculus� A simple so�
lution �sometimes� and a completeness result for goal regression� In
V� Lifschitz� editor� Arti�cial Intelligence and Mathematical Theory of

Computation � Papers in Honor of John McCarthy� pages �������
Academic Press� �����

���� Werner Stephan and Susanne Biundo� A new logical framework for de�
ductive planning� In Proceedings of the International Joint Conference

on Arti�cial Intelligence� page ��� �����

���� Werner Stephan and Susanne Biundo� Deduction�based re	nement
planning� Technical Report RR������� Germen Research Center for
Arti	cial Intelligence �DFKI�� fstephan�biundogddfki�uni�sb�de� �����

���� H��P� St!orr� Bedingte und Rekursive Aktionen im Fluent�Kalk!ul� Mas�
ter�s thesis� Dresden University of Technology� ����� �in German��

���� Graham White� Golog and linear logic programming� Technical report�
Dept� Computer Science� Queen Mary andWest	eld College� University
of London� January ����� http���www�dcs�qmw�ac�uk��graham�

��

A Appendix
 A Prolog program

We give below a Prolog program for the simpli	ed version of the omelette
baking problem� In the Prolog program terms with � as well as plans are
represented by lists� The predicate ac��match�X�Y�Rest	 solves the AC��
equation X � Rest � Y�

A�� Domain independent part

ac��match�
�� T� T	�

ac��match�
E�R�� T� R�	 �

multi�minus�T�E�T�	� ac��match�R�T��R�	�

multi�minus�
E�R��E�R	 � ��

multi�minus�
E��R���E�
E��R��	 � multi�minus�R�� E� R�	�

world�S��
A�P��S��P	 � causes�S��A�S�	�

world�S��
if�H�PA�PB	�P��S��PN	 �

holds�H�S�	� append�PA�P�PN	�

world�S��
if�H�PA�PB	�P��S��PN	 �

�� holds�H�S�	� append�PB�P�PN	�

world�S��
H�P��S��PN	 �

proc�H�C�B	� holds�C�S�	� append�B�P�PN	�

continuable�S��P�	 � world�S��P���S���P�	�

doplan�S��
���M�S�	�

doplan��S���P����fail	�

doplan�S��P��M�SN	 � P���
�� M � �� M� is M��

world�S��P��S��P�	� doplan�S��P��M��SN	�

doplan�S��P��M�fail	 � P���
�� M � �� �� continuable�S��P�	�

planfails�S��P��N	 � doplan�S��P��N�SN	� �� goalstate�SN	�

nat��	�

nat�X�	 � nat�X	� X� is X���

��

A�� Domain dependent part

action�
eg��break�
sg�	�

action�
eb��break�
sb�	�

action�
sg��emptysc�
�	�

action�
sb��emptysc�
�	�

causes�S��A�S�	 � action�C�A�E	�

ac��match�C�S��R	� append�E�R�S�	�

holds�true�S	�

holds�badegg�S	 � ac��match�
sb��S��	�

proc�egg�saucer�true�

break� if�badegg�
emptysc�egg�saucer��
�	 �	�

goalstate�S	 � SN �� fail�

ac��match�
sg��S��	� �� ac��match�
sb��S��	�

A�� Query

To check that the plan egg�saucer solves the problem for the case of three
bad eggs and one good egg the Prolog interpreter has to prove

� nat�N	� �� planfails�
eb�eb�eg�eb��
egg�saucer��N	�

This yields the answer N � ��� i�e� the plan is executable� correct and ter�
minates after at most �� steps� The query

� doplan�
eb�eb�eg�eb��
egg�saucer�����S	�

yields the possibly reached 	nal states within the limit of �� steps�

S �
sg� eb� eb� eb� �

S �
sg� eb� eb� �

S �
sg� eb� �

S �
sg� �

��

