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Abstract: In this paper we present a fuzzy description logic ����� , where primi-
tive concepts are modified by means of hedges. ����� is strictly more expressive
than Fuzzy-��� defined in [8]. We show that given a linearly ordered set of hedges
primitive concepts can be modified to any desired degree by prefixing them with ap-
propriate chains of hedges. Furthermore, we define a decision procedure for the un-
satisfiability problem in ����� , and discuss truth bounds, expressivity as well as
complexity issues.
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1. Introduction
In many areas of computer science and artificial in-
telligence logic has been accepted as the mathemati-
cal foundation for knowledge representation and rea-
soning. Beyond that it has been recognized that the
logic itself can be used as computation unifying in an
almost ideal way declarative and operational seman-
tics. Among the many applications description log-
ics have been particularly successful (see e.g. [1, 2]).
The main object of description logic is to fix a ter-
minology by describing concepts and their relations,
and to provide (decidable) key services for reasoning
wrt this terminology like, for example, subsumption
and unsatisfiability testing.

In all applications of description logis that we are
aware of except [8] and [9] concepts are crisp unary
relations, i.e., an object may or may not be an ele-
ment of a particular concept. On the other hand, in
many real-world applications like, for example, in-
telligent e-commerce information is often vague and
imprecise. We may observe that a customer is in-
terested in technical aspects, whereas he or she is
not interested in design issues. Fuzzy set theory in-
troduced by Lotfi A. Zadeh (see e.g. [10]) provides
an ability to denote non-crisp concepts, i.e., an ob-
ject may belong to a certain degree (typically a real
number from the interval ��� �� ) to a particular rela-
tion. For instance, the semantic content of custumer
Robert being interested in technical aspects may be
described by means of a statement like “Robert is
interested in technical aspects” and establishing that
this sentence has a degree, or truth–value, of ���.

Humans typically use linguistic adverbs like
“very”, “more or less” etc. to distiguish, for exam-
ple, between a custumer who is interested in tech-
nical details and one who is very interested in these
details. In [6] Zadeh introduces so-called linguistic
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hedges modifying the shape of a fuzzy set by trans-
forming it into another. For instance, he introduced
the operator CON (for “contraction”) that maps the
membership function �� of a fuzzy set � to a
membership function ����� � that has high degrees
of membership only for those elements of the do-
main, that belong “very much” to �. In other words,
the degree of membership for elements that already
had a low degree of membership in � is decreased,
whereas the degree of membership for elements with
a high degree of membership is left high. Techni-
cally, Zadeh achieves this by simply raising the de-
gree of membership to the �-th power, where � � �
is a constant which can be fixed by the application.
For example, ����� ���� � �����

� . This techni-
cal solution calls for the introduction of an opposite
operator DIL (for dilation) that maps the degree of
membership to the � �-th power, where � 	 � � 	 � ,
thereby strengthening the degree of membership of
elements with small degree. One should note that
these hedges can be concatenated, for example, if we
want to consider elements that belong to � “very
very much”, then �� can be transformed into its
��-th power by applying the operator CON twice:
CON CON �.

Because the gap between � and CON � in this
setting is quite large, it seems a good idea to refine
this idea. In many human languages there is almost
a continuum of phrases like “more or less”, “much
less”, “possibly rather” and so forth expressing dif-
ferent levels of emphasis. The so called hedge alge-
bras introduced in [4] give an algebraic structure that
formally defines such hedges and structures their re-
lationships. They have been applied to fuzzy logic
in various ways (see e.g. [3]), but to our knowl-
edge, hedge algebras have not been applied as con-
cept modifiers in description logic.

In this paper we apply linear ordered hedge al-
gebras as concept modifiers in the framework of a
fuzzy description logic. The paper is organized as
follows: In the following Section 2. we recall basic
notions from fuzzy description logics and the struc-
ture of hedges. In particular, we define an extended
fuzzy description logic with hedges ����� . Con-



cept modifiers are formally introduced in Section 3..
A decision procedure for the unsatisfiability problem
of ����� is presented in Section 4.. Expessivity
and complexity issues are discussed in Sections 5.
and 6. Finally, we discuss our findings in Section 7.

2. Logical Basics
2.1. Fuzzy Description Logic
Concepts are expressions that collect the properties,
described–among others–by means of roles of a set
of individuals. From a first order logical viewpoint,
concepts can be seen as unary predicates, whereas
roles are interpreted as binary predicates. A concept
can be build out of primitive concepts, roles, mod-
ifiers and combinations of other concepts (see Ta-
ble 1). For the fuzzy extension, a concept � , rather
than being interpreted as a classical set, will be repre-
sented as a fuzzy set and, thus, concepts become im-
precise. Consequently, a statement like “ 
 is � ”,
where 
 is an individual, will have a truth-value in
��� �� denoting the degree of the membership of 

in the fuzzy set � .

��� � � (primitive concept)
� (primitive role)
� (top concept)
� (bottom concept)
�� (negation)

� (concept modification)
� �� (concept conjunction)
� �� (concept conjunction)
	��� (universal quantification)

��� (existential quantification)

Table 1: The language ����� of the description
logic ��� extended by fuzzy hedges. As a nota-
tional convention, � and � denote concepts, �
primitive concepts, � roles and 
 concept modi-
fiers, all of them possibly with subscripts.

The semantics is based on the notion of an inter-
pretation. An interpretation is a pair � � ��� � ��
consisting of an non-empty set �� (called the do-
main) and an interpretation function � mapping in-
dividuals to elements of �� , concepts � to a mem-
bership function �� 	 �� � ��� ��, and roles � to
a membership function �� 	 �� � �� � ��� ��.
Therefore, if � 
 �� is an object of the domain
�� , then ����� is the degree of � being an ele-
ment of the fuzzy concept � under � . Roles are
interpreted in the same way. The interpretation for
complex concepts is defined in Table 2.3

Two concepts � and � are said to be equivalent
(denoted by � �� � ) when �� � �� for all inter-
pretations � . For instance, � �� ��, �� � �� ��
���� � ��� and �	���� �� ��
�����.

3The similarity of the definitions of many of the op-
erators defined in Table 2 with fuzzy set operations [5] is
intended.
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Table 2: Interpretations of ����� . �� is a mem-
bership modifier discussed later.

A fuzzy assertion (denoted by � ) is one of �� �
��, �� � ��, �� � ��, �� 	 �� and �� � ��
where � is an expression of type 
 	 � (“
 is
in �”), �
� �� 	 � (“�
� �� is in �”) and � 

��� ��. From a semantical viewpoint, a fuzzy asser-
tion �� � �� constrains the truth-value of � to
be greather or equal to �. Formally, an interpre-
tation � satisfies a fuzzy assertion �
 	 � � ��
(resp. ��
� �� 	 � � �� ) iff ���
�� � � (resp.
���
� � ��� � � ). The operators ���� 	 and �
are interpreted in the same way. Two fuzzy asser-
tion �� and �� are said to be equivalent (denoted
by �� �� �� ) iff they are satisfied by the same set of
interpretations.

A fuzzy terminological axiom is either a fuzzy con-
cept specialization of the form � 	� � or a fuzzy
concept definition of the form � 	� � . A speciali-
sation denotes the ”more specific than”-relation be-
tween concepts, and a definition denotes the equiv-
alence of concepts. A fuzzy interpretation � satis-
fies a fuzzy concept specialisation � 	�� iff for all
� 
 �� we find ����� � �����, whereas � sat-
isfies a fuzzy concept definition � 	� � iff for all
� 
 �� we find ����� � �����.

A fuzzy knowledge base � is the union of a fi-
nite set �� of fuzzy assertions and a finite set �	

of fuzzy terminological axioms. An interpretation �
satisfies (or is a model of) a fuzzy knowledge base
� iff � satisfies each element of �. A fuzzy know-
ledge base entails a fuzzy assertion � (denoted by
� �� � ) iff every model of � also satisfies �.
Furthermore, let � and � be two concepts, �
fuzzy subsumes � with respect to �	 (denoted by
� ��� � ) iff for every model � of � and for all
� 
 �� we find ����� � �����.

The problem of determining whether � �� � is
called entailment problem, whether � ��� � is
called fuzzy subsumption problem, and whether �
is satisfiable is called satisfiability problem.



2.2. The Structure of Hedges
In fuzzy set theory, hedges ware defined as unary
operators which act on fuzzy sets, and form new
fuzzy sets [6], for instance, ��������� � �����

� ,
where � an element of the universe � and ��

is the membership function of the fuzzy set �.
Starting from a set of hedges � , for example
�very � mol � rather � possibly �,4 a hedge algebra de-
fines an ordering relation � on linguistic terms. In
the work of Nguyen Cat Ho etal. [4, 3] linguistic
terms are defined as chains of hedges applied to so-
called generators, whose truth value is modified by
the hedges. In the context of description logics the
generators are the primitive concepts. In this pa-
per, we assume that � is linearly ordered such that
each two hedges are comparable. In the literature
hedge algebras with partially ordered sets of hedges
are also studied by extending refined hedge alge-
bras with distributive properties. In principle, the
method for mapping linguistic terms to fuzzy sets
seems to be applicable in case of partially ordered
sets of hedges as well if a linearization of the order
is considered.

In contrast to the hedges introduced by Zadeh,
a chain of hedges has a meaning only taken as a
whole: each new hedge put in front refines the mean-
ing of the others. Each hedge is either positive
or negative wrt the others, i.e., it increases or de-
creases the meaning, respectively. ”Very”, for ex-
ample, can be positive to ”very” when it strenghtens
the effect: � � very � � very very �. On the
other hand, it can be at the same time negative to
other hedges like ”possibly”, when it reduces its ef-
fect: possibly � � very possibly � � �, and, thus,
very possibly � is less different from the original
meaning � than possibly �.

To discuss hedge algebras extensively is out of the
scope of the paper. Thus, we will only introduce
those notions and properties that will be used in the
remainder of the paper. Two lingistic terms � and �
are independent if neither of them can be formed by
putting some more hedges in front of the other. To
capture this property formally, we introduce ����
as the set of linguistic terms that can be formed by
prefixing � with chains of hedges: ���� � �Æ� �
Æ is a chain of hedges�. Then, � and � are inde-
pendent if � �
 ���� and � �
 ����. Consequently
we have that � �
 ���� for all � 
 ����. For two
different hedges � and � , prefixing other hedges
�� and �� to � and � resp. can not change the se-
mantical ordering relationship between �� and ��,
i.e. ���� 	 ���� iff �� 	 ��.

Representating a concept as a fuzzy set we can
use hedge properties for concept modifiers. Then,
from a fuzzy assertion � like �
 	� � �� we may
infer that �
 	 very� � �
� , with � � � , and
�
 	mol � � �


�

� , with � 	 �� 	 � .
In the next section we will define concept manip-

ulators using hedge algebras

4 mol is an abbreviation for more or less .

3. Concept Modifiers
Let us consider the set � � ���� ��� ���� ��� of
hedges, among which each element of � is either
positive or negative wrt all primitive concepts and all
other hedges including itself. Let � be the set of all
primitive concepts, we define sign 	 ��������
���� �� with

sign ���� �
�� �

�
�� if �� is negative wrt ��,
� if �� is positive wrt ��.

where �� 
 � , �� 
 � � �. The mapping sign
tells us whether �� increases or decreases the mean-
ing of �� , if �� 
 �, or ��Æ�, where �� is a
hedge, � is a primitive concept and Æ is any chain
of hedges.

In our extension of Fuzzy-��� we introduce
concept modifiers 
 in form of a chain of hedges

 � �
�
�� � � � �� with �� 
 � , for all � � �� �.
In this section we will define a mapping �� 	
��� �� � ��� �� that gives each hedge chain a mean-
ing within the interpretation defined in Table 2. We
will follow the idea of Zadeh to use power functions
for this purpose.

Definition 1. A membership modifier is an exponen-
tial function � 	 ��� �� � ��� �� with ���� � �
 ,
where � � �.

So we have to calculate an exponent � for each
sequence of hedges. In the following, we will
present an algorithm exponent which calculates �
for each hedge chain from a giving hedge set � rep-
resenting a membership modifier based on following
ideas:

� We extend the idea behind Zadeh’s operators
CON and DIL discussed in the introduction in
that we keep the idea of taking a power func-
tion with exponents � � � for positive and
� 	 � 	 � for negative hedges, but vary the ex-
ponents depending on the hedge. For instance, if
the degree of being 25 years “young” is ���, then
the degree of being 25 years “very young” might
be ���� � ����, whereas 25 years “more or less
young” may have the degree of ������ � ����� .

� Membership modifiers should preserve the in-
dependence property of hedges, i.e., for all
�� ��� �� �� 
 � we should find that if �Æ 	 �Æ
then ���Æ 	 ���Æ, where Æ is a chain of hedges.
In other words, �� and �� can not change the se-
mantic ordering between �� and ��. As we will
show, this property carries over to the exponent.
Note that this is different from Zadehs proposal
of CON and DIL : They are commutative, i.e.,
CON DIL � � DIL CON �.

� The set �� � �Æ � Æ is a chain of hedges � of all
membership modifiers should be mapped dense
into the interval �����. I.e. we should be able to
approximate each value in ����� to any required
precision by an ������� �Æ� such that Æ 
 � � .
In case of � approaches �, the correlative mem-
bership modifier may change membership degrees



of all individuals to 1, and in inverse case, if �
comes close to ��, then all membership degrees
approximate 0 (See Figure 1.)

�
�
�
�
�
�
�
�

� � �

��

1

0 1

�Æ�

� � � � �

Figure 1: The membership modifier of Æ�.

Based on the above ideas, we favour in this pa-
per an approach to construct membership modifiers
in which the greatest positive modifier (e.g. ”very”)
behaves like the “traditional” operator CON . I.e.
we choose a value upper � � as exponent for
CON , such that ��!" � � CON � � �upper ,
��!" ��!" � � �#$ �#$ � � �upper � and so
forth. Likewise, we choose a value � 	 lower 	 �
as exponent for DIL , and treat the greatest negative
modifier (e.g. “less”) like DIL : less � � DIL � �

�lower , very less � � DIL DIL � � �lower � . The
values upper and lower can be chosen arbitrarily
in the range upper � � and � 	 lower 	 � as
parameters for the algorithm below to build a family
of concept modifiers.

To simplify the computing process we as-
sume that � is linearly ordered, i.e., each two
hedges are comparable, and restrict ourselves to
hedge sets � of an even cardinality ��, and
sets of positive hedges and negative hedges of
the same size �, i.e., we can represent � as
� � ���� � ��� � ���� ��� � ��� � ��� � ���� ��� �, with posi-
tive hedges ��� 	 ��� 	 ��� 	 ��� and negative
hedges ��� 	 ��� 	 ��� 	 ��� . To avoid inter-
mingling between positive or negative hedges, we re-
strict the mapping sign such that for a given �� ei-
ther all positive hedges ��� increase the meaning of
�� and all negative hedges ��� decrease the mean-
ing, i.e., sign ���� � ��� � � and sign ���� � ��� �
��, or the other way around, i.e., sign ���� � ��� �
�� and sign ���� � ��� � �.

The algorithm of calculating � for a chain 
 �
�
�
�� � � � �� of hedges is described in Figure 2.
In the i-th step, sig indicates that �� increases
(by sig � � ) or decreases (by sig � �� ) the
value of ���� ; �� will be the correlated value to
������ � � � �� ; and ( lo�� up� ) defines the interval in
which the exponent of Æ������ � � � �� can be ob-
tained, where Æ is any chain of hedges. In case of
most changing positive modifier (called by greatest
positive modifier) like ”very very . . . very” we as-

Algorithm exponent

Constants: the values upper � �, � 	 lower 	 �,
the mapping sign 	 � � �� � ��� ���� ��

Input: Concept modifier 
 � �
�
�� � � � �� with
�� 
 � for all � � �� �

Output: The exponent �

�
up� � upper ; lo� � lower ; �� � � ;
mpos � � ; mneg � � ; sig � sign ���� �� ;
for � � � to � do �

compute the index % such that
�� � ��� or �� � ��� ;

if � � � then sig � sig � sign ���� ����� ;
if sig � � then �

�� � ���� �
������
���

�� � ��% � �� ;

up� � ���� �
������
���

�� � ��%� ;

lo� � ���� �
������
���

�� � ��% � �� ;
if mpos � � and % � � then �

�� � upper � ; up� � upper ��� ; �
else mpos � � ;

�
else �

�� � ���� �

���������

�� � ��% � �� ;

up� � ���� �

���������

�� � ��% � �� ;

lo� � ���� �

���������

�� � ��%� ;
if mneg � � and % � � then �

�� � lower � ; lo� � lower ��� ;�
else mneg � � ;

�
�
return( �
 );

�

Figure 2: The algorithm to calculate the exponent �
of membership modifier 
 .

sign �� � upper � and up� � upper ��� , to extend
the interval for Æ������ � � � �� to ( lo���� ). In this
case is mpos � �. If there exists only one �� in
�
�
�� � � � �� with � �� �, then mpos is changed
to 0, and in this case it is not inspected any more.
mneg is dealt with in an inverse manner such that
the exponent of Æ������ � � � �� can receive values in
( �� up� ).

In the following we will prove some properties
of the algorithm. In the proofs we will often need
to discuss what happens in the main loop, whose
behaviour is different depending on the sequence
������ � � � �� . To save space, we will define four
cases that will be referred to in the proofs by their
number. Let us denote �� � ������
���

�� and

�� � 
���������

�� , by induction it is easy to exam-
ine that �� � � and �� � � for all �, and we have:



(I) �� is positive wrt ��������� and ������ � � � ��
is not the greatest positive modifier:

�� � ���� � �� � ��% � ���
up� � ���� � �� � ��%��
lo� � ���� � �� � ��% � ���

(II) �� is positive wrt ��������� and ������ � � � ��
is the greatest positive modifier:

�� � upper ��
up� � upper ����
lo� � ���� � �� � ���� ���

(III) �� is negative wrt ��������� and ������ � � � ��
is not the greatest negative modifier:

�� � ���� � �� � ��% � ���
up� � ���� � �� � ��% � ���
lo� � ���� � �� � ��%��

(IV) �� is negative wrt ��������� and ������ � � � ��
is the greatest negative modifier:

�� � lower ��
lo� � lower ����
up� � ���� � �� � ���� ���

Before turning to the properties of this algorithm
we would like to illustrate it be means of an example.

Example 1.
Consider � � �very � mol � with � � �, upper �
�, lower � ��� and sign as follows:

� very mol
very � � ��
mol �� �� �

Applying the algorithm we obtain:

sig mpos lo � up
mneg

very � � � � � �
mol �� � � ���� ��� �

very very � � � � � �
mol very �� � � � ��� �
very mol � � � ��� ���� �
mol mol �� � � ����� ���� ���

Let 
 � �
�
�� � � � �� be a concept modifier,
the corresponding values are denoted by lo� , ��
and up� . �� is �
 , the output of the Algorithm,
and lo� , up� are lo
 , up
 , which are calculated
in the q-th step, respectively. For examination of
the independence property we need the following
lemma.

Lemma 1. For any concept modifier M we find:
lo� 	 �� 	 up� .

Proof. It is easy to prove in the cases (I), (III),
(II): �� 	 up� and (IV): lo� 	 �� We have to
consider the case (II), whether &�� 	 �� is satis-
fied. The case (IV) is similar.

Because ��� � 	 �� we also obtain ����
�� 	 �.

Therefore lo� � �
�� � �up
�� � �
���
����
�� 	

�
����up
����
����� � �
���up
����
�� �
upper 
 because �
�� � � � �� is also the greatest pos-
itive modifier of the length � � �. So lo� 	 �� �
upper 
 .

Lemma 2. Let � 
 � , then lo� � ��� � up� .

Proof. It is easy to deduce the following constraints:
lo� 	 �� � lo�� 	 ��� 	 up�� � up� in
case (I)
lo� 	 �� � lo�� 	 ��� � up� 	 up�� in
case (II)
lo� � &��� 	 ��� 	 up�� � �� 	 up� in
case (III)
lo�� 	 &�� � ��� 	 up�� � �� 	 up� in
case (IV)
Thus, lo� � ��� � up� holds in all cases.

Therefore, we have the independence property of
concept modifiers.

Theorem 1. Let 
� � Æ���
 � � � �� and 
� �
Æ��

��
 � � � �� , with �� ��� �� 
 � , � � �� �, be
two concept modifiers with the exponents ��� �� .
Let �� �� be the exponents of ��
 � � � �� and
���
 � � � �� . Then, for every Æ�� Æ� we have that
�� 	 �� holds if � 	 �� .

Proof. Let 
 � �
 � � � �� . We support that Æ� �
�� � � � �� . Since Æ��
 is not the greatest positive
modifier (because � 	 � � ), we only need to pay
attention to the cases (I), (III) and (IV). There are
usually ��� 	 up�� � up� . Thus,
�� � ���������� 	 up��������� � up����������� �
� � � � up���� � up��
Similarly, we can obtain: lo��� 	 �� .
Now, we examine that up�� � lo���
According to the assumption, � 	 � � , so the next
cases can happen:
1. � and �� are positive wrt 
 , with � � ��� ,
�� � ���� or � � ��� , �� � ���� and % 	 % � � �,
For % 	 %� , i.e. % � % � � �, or �% � �% � � �, it
follows

���
up� � ��

��
��%� � ���

up� � ��
��

��%�����

or up�� � lo��� .
2. � and �� are negative wrt 
 : it is similar to the
positive case.
3. � is negative and �� is positive wrt 
 : it is
easy to prove because up�� � �� � lo���
Thus, the theorem is completely proven.

Now, we examine that our membership modifiers
can change the membership degree of being an indi-
vidual � an element of a concept � to any value in
��� ��, i.e. for �� 	 � � �� and giving ' 
 ��� ��,
there exists a concept modifier 
 with the exponent
� , such that �� 	
� � �
� and ��
�'� 	 (, with
( � �. We prove the following lemma.



Lemma 3. Let 
�

 � �
 � &��) ��
� � �� be

the set of all concept modifiers containing � hedges,
( lo� � up� ) be the intervall for exponents of Æ

for every Æ. Then�

����
�

�lo� � up� � � �lower 
��� upper 
���

Proof. Let us denote 
 � �
 �, with � 
 � and

 � contains � � � hedges. By examining all four
cases (I), (II), (III) and (IV) we obtain:

�
���

�lo�� � � up�� � � �

�������������
������������

�lower 
��� lower 
���
if 
 � � 
 is the
greatest neg. modifier

�upper 
��� upper 
���
if 
 � � 
 is the
greatest pos. modifier

�lo� � � up� � �

otherwise

Besides,�
� � ������� � ���

�lo� � � up� � � � �lower 
��� upper 
���

Thus,�
����

�

�lo� � up� � �
�

� ����

���

�
�
���

�lo�� � � up�� � ��

= �lower 
��� lower 
��� � �lower 
��� upper 
��� �
�upper 
��� upper 
��� � �lower 
��� upper 
���

Theorem 2. For � 
 ������ and any ( � �, there
exists a concept modifier 
 such that �� � �� 	 (,
where � is the exponent of 
 .

Proof. For the giving �, we can choose � such that
� 
 �lower 
��� upper 
���. By Lemma 3 there ex-
ists 
 
 
�


 such that � 
 �lo� � up� �. So, we
have, ��� � �� 	 up� � lo� . Since furthermore
� 
 � , it holds ���� � �� 	 up�� � lo�� 	
up� � lo� . And so on, this process continues until
we obtain Æ such that ��Æ� ��� 	 upÆ� � loÆ� 	
(

Hence, our exponential membership modifiers
generate a family of modified concepts from a prim-
itive concept �, and change the membership degree
of an individual as an element of those. It follows,
let �� 	� � �� be a fuzzy assertion and ' 
 ��� ��,
for any ( � �, there exists a concept modifier 

with the exponent � , such that �� 	
� � �
� and
��
 �'� 	 (. Furthermore, there is a subsumption
relation between modified concepts.

Theorem 3. Let � � 
� and � � 
 �� be
two modified concepts from primitive concept �,
and �� �� are the exponents of 
�
 �. Then, �
subsumes � iff � � � � .

Proof. � : � � �� implies �
 � �

�

for all � 

��� ��, or �������
 � �������


�

for all individuals
�. It follows �
������ � �
 ������� for all � ,
or ����� � �����. Also, � fuzzy subsumes � .
� : for �
������ � �
 ������� for all �, or

�������
 � �������

�

, we have � � �� .

Now we are ready to turn our attention to decision
procedures.

4. Decision procedure
In this section we present a decision procedure for
unsatisfiability in ����� . As usual, other prob-
lems can be reduced to an unsatisfiability problem,
e.g. the satisfiability problem:

� �� ��*�� *�� 	� Æ ��

iff � � ��*�� *�� 	� � �� is unsatisfiable�

� �� �* 	� Æ ��

iff � � �* 	� � �� is unsatisfiable�

where Æ is one of ������ 	, and � is the negated
operator �� 	����, respectively. The assertion of
type �� � �� is not explicitly considered here,
since it can easily be reduced to assertions using �
and � :

� �� �� � �� iff

� �� �� � �� and � �� �� � �� �

resp.

�� �� � �� �� � iff

�� �� � ��� �� � �� �� � �

Due to lack of space we do not discuss the sub-
sumption problem in this paper, however we conjec-
ture that it can be reduced to the satisfiability prob-
lem by a process similar to knowledge base expan-
sion [7], as in the closely related fuzzy ��� [8].

Our unsatisfiability decision procedure closely
follows [8], but introduces a new set of rules for the
handling of concept modifiers. Starting from a set
+ of fuzzy constraints, we apply propagation rules
to add “simpler” constraints preserving the satisfi-
ability. This process continues until we either find
some contradictory constraints (a clash), thus prov-
ing unsatisfiability, or if no more rules are applica-
ble. In the latter case we can construct a model from
the completed set of constraints. Due to the non–
deterministic nature of some of the rules, unsatisfia-
bility has to be proven for possible all choices in the
application of the rules. Thus, in general backtrack-
ing will be necessary to prove unsatisfiability.

+ contains a clash iff it contains either one of
the unsatisfiable fuzzy constraints �� � �� where
� � �, �� � �� where � 	 �, �� 	 ��, �� � ��,
�� � ��, or �� 	 ��, or + contains a conjugated
pair of fuzzy constraints as in Table 3.



�� 	 '� �� � '�
�� � �� � � ' � � '
�� � �� � � ' � � '

Table 3: The conditions, under which a row-column
pair of fuzzy constraints is conjugated.

Table 4 contains the rules for of calculus. We
have augmented the rules from [8] by the rules
�
��� �
��, �
�� and �
�� to handle the con-
cept modifiers. These propagation rules have the
form � � � if � , where � and � are sets
of fuzzy constraints and � is a condition. A rule
can be applied to a set + of fuzzy constraints if the
condition � holds wrt + , � � + and � con-
tains constraints not yet contained in + . As the
result of the application the constraints in � are
added to + . An exception to this application rule are
the non-deterministic rules ����� ����� ���� and
����, where � is of the form �� � �� . They can
be applied if � holds wrt + , � � + and neither
�� nor �� is a subset of + . The result of their ap-
plication is non-deterministically either the addition
of �� or the addition of �� to + .

A completion of a finite set of constraints + is
the result of the application of the rules in Table 4
starting with + until no more rules can be applied.
The calculus has the termination property, i.e. the
rules can only be applied finitely often to a finite set
of constraints: Since the sequents the rules add to
the set have smaller term sizes than the antecedents,
and each rule can be applied only once (or finitely
often in the case of �	�� and �
�� ) to the same
antecedent, there can be no infinite chain of rule ap-
plications.

Example 2. Let us consider the following knowl-
edge base � :

“If a customer is very interested in a property, he
wants a product � that has that property” holds to a
degree more than 0.9:

�� 	��
attr� very int� � wants � ����(1)

“The customer is interested in technics” to � ��� :

�tech 	 int � ����(2)

“The product � has attribute technics” to � ��� :

���� tech� 	attr � ���� �(3)

We want to prove that � entails that the customer
wants product � to a degree of at least 0.9. That is,
we have to prove the unsatisfiability of � together
with the complement of the claim:

�� 	wants 	 ����(4)

Application of rule ���� is non–deterministic. We
have to consider the case

�� 	wants � ���� �(5)

�* 	�� � �� � �* 	� � �� ��(��)

�* 	�� � �� � �* 	� � �� ��(��)

(��) �* 	� �� � �� �

�* 	� � ��� �* 	� � ��

(��) �* 	� �� � �� �

�* 	� � ��� �* 	� � ��

(��) �* 	� �� � �� �

�* 	� � �� � �* 	� � ��

(��) �* 	� �� � �� �

�* 	� � �� � �* 	� � ��

(
�) �* 	
� � �� � �* 	� � �
�

� �

if � � exponent �
�

(
�) �* 	
� � �� � �* 	� � �
�

� �

if � � exponent �
�

(
�) �* 	
� � �� � �* 	� � �
�

� �

if � � exponent �
�

(
�) �* 	
� 	 �� � �* 	� 	 �
�

� �

if � � exponent �
�

(	�) �*� 		��� � ��� � � �*� 	� � ��

if � is conjugated to ��*�� *�� 	� � ���� 
 +

(
�) �*� 	
��� � ��� � � �*� 	� � ��

if � is conjugated to ��*�� *�� 	� � ��

(
�) �* 	
��� � �� �

��*� �� 	� � ��� �� 	� � ��

if � is a new variable and there is no * �

such that both ��*�*�� 	� � �� and

�*� 	� � �� are already in the constraint set

(	�) �* 		��� � �� �

��*� �� 	� � �� ��� �� 	� � ��

if � is a new variable and there is no * �

such that both ��*�*�� 	� � �� �� and

�*� 	� � �� are already in the constraint set

Table 4: The rules of the decision procedure. In ad-
dition to the presented rules there are rules ����,
����, ���� � � � �	�� for the strict relations. These
can easily be obtained from the rules above by re-
placing � by � and � by 	.



which immediately yields a clash with (4). The other
case yields

�� 	��
attr� very int� � ���� �(5’)

�� 	
attr� very int � ���� �(6’)

Since (3) is conjucated to ���� tech� 	 attr � ���� ,
rule �
�� yields:

�tech 	very int � ����(7’)

Application of �
�� with exponent �very � � �
gives

�tech 	 int � �� ��� �(8’)

which clashes with (2). Thus, there is no clash–free
completion of � � �(4)� . Hence, it is unsatisfiable,
and consequently � �� �� 	wants � ���� .

The discussed rules give us a decision procedure
for ����� , because we can construct a model for
a set + of constraints from a clash–free completion
of + or prove that there is no model for + if there
os no clash–free completion.

Theorem 4. A finite set of fuzzy constraints + is
satisfiable iff there exists a clash free completion
of + .

Proof.

� : By case analysis it is easily verified that the
rules are sound, i.e. if we apply a rule to a satisfi-
able constraint–set +� , the result +� is satisfiable
as well, and thus, clash–free. Let us just give two
examples for the rules �
�� and �
��.
�
�� : Assume �
�� is applicable, i.e. +� con-

tains �*� 	
��� � �� and ��*�� *�� 	� � ��
for some *�� *� and � � ' � � � �. 5

Since +� is satisfiable, there is an interpreta-
tion � that satisfies both �*� 	 
��� � ��
and ��*�� *�� 	 � � ��. If �*� 	 � �
'� was not satisfied by � , we would have

������*�

� � *
�
� �� �

��*�
� �� � ' � �, and

thus �
����� � � according to Table 2. This
contradicts our assumption, i.e. �*� 	� � '�
is satisfied by � , and thus +� .

�
�� : Assume �
�� is applicable, i.e. +�
contains �* 	
� � �� for some , , �, and
the concept modifier 
 applied to the primi-
tive concept �. Since +� is satisfiable, there
is an interpretation � that satisfies �* 	
� �
��, and thus �
����*�� � �����*��
 � �.
Let � � exponent �
�. Since � � � and
� � � we can conclude �����*�� � �

�

� .
Thus, +� is satisfied by � as well.

� : Assume + � is a clash–free completion of + .
We will now construct a model for the fuzzy con-
straints of + � that only contain primitive concepts
or roles, and prove that it is a model of + � , and
thus + , as well.

5We skip the similar other case ��� � � � �� with
� � � for the clash, here.

Consider the interpretation � such that the do-
main �� is the set of objects appearing in + � ,
*� � * for all * 
 �� , and that maps the prim-
itive concepts and the roles to the median of the
lowest upper bound and the greatest lower bound
given in + �, inclusive the implicit constraints 0
and 1:

���*�� �

�

�


�

�
�� � �* 	� � �� 
 +���

�� � �* 	� � �� 
 +�� � ���

�
�

�

�

��

�
�� � �* 	� 	 �� 
 +���

�� � �* 	� � �� 
 +�� � ����

�

���*�
� � *�

� � �

�

�


�

�
�� � ��*�� *�� 	� � �� 
 +���
�� � ��*�� *�� 	� � �� 
 +���

���

	
�

�

�

��

�
�� � ��*�� *�� 	� 	 �� 
 +���
�� � ��*�� *�� 	� � �� 
 +���

���

	

It can easily be verified that this interpretation sat-
isfies all constraints for primitive concepts and
roles given in + � if +� is clash–free. The sat-
isfaction of the other fuzzy constraints in + � are
shown by induction on the term structure of the
����� -formula in the constraints. Again, we
just present two cases for space reasons.
Case �* 		��� 	 �� Since + � is complete,

there is a *� such that ��*� �� 	 � � � � ��
and �� 	� 	 �� are in + � and are satisfied by
� by induction assumption.6 Thus, there is a
*� 
 �� such that �����*� � *��� 	 � and
���*��� 	 �, and hence �	����� 	 �.

Case �* 	
� � �� : Since + � is complete,
�* 	 � � �

�

� � with � � exponent �
� is in
+� and is satisfied by � by induction assump-
tion. Thus, ���*�� � �

�

� , and since � � �
we have that �
����*�� � �.

5. Truth Bounds and Expressivity
In practice it is often important to determine bounds
for the truth values at which fuzzy constraints are en-
tailed or can be satisfied. For instance, for a knowl-
edge base � the lowest value of � (called the lower
truth bound) such that � �� �� 	 technical � ��
might determine how much the customer � is in-
terested in technical aspects. [8] proves for Fuzzy-
��� that � is one of the values occurring in �,
their complements, or one of ��� ���� ��. The fol-
lowing example shows that this is not true for our

6 �� is either the new variable indtroduced by the ap-
plication of ����, or the �� that prevented the execution
of ����.



language. Thus, the binary search in that set sug-
gested in [8] does not suffice to calculate the truth
values in ����� . This also shows that our lan-
guage is strictly more expressive than Fuzzy-��� .

Example 3. Consider the satisfiability problem

(9) � �� �technical � �very technical � �� �

As the reader can easily verify, this is satisfiable
whenever � is less than � � �, where � is the so-
lution for � � �� � � and � � exponent ���!"�.
If we choose the hedges as in Example 1, we have
� � �, and thus (9) is satisfiable iff � � ����� � � �.

However, one can easily approximate the truth
bounds to any given precision by a binary search in
the interval ��� ��. E.g., starting from ��� ��, an in-
terval �&� �� for the lower truth bound for � in � ��
� 	 � � � can successively be halved to �&� ���

�
� or

����
�

� �� by checking whether � �� � 	 � � ���
�

is satisfiable. It seems likely that the application of
constraint propagation techniques can improve this
process very much.

6. Complexity
Because the language Fuzzy ��� defined in [8]
is a subset of ����� and we use a similar de-
cision procedure, the PSPACE-hardness of deciding
entailment for Fuzzy ��� carries over to our lan-
guage. Another result that carries over is, that the
rules for the quantifiers 
 and 	 can lead to expo-
nential space requirements in a proof. [8] alleviates
this problem through the introduction of so called
trace rules for the quantors, and we believe this is
possible for our case as well.

7. Discussion
Description logics are a widely accepted formalism
for representing and reasoning about a terminology
based on crisp concepts and relations. Fuzzy logic
is a widely accepted formalism for representing and
reasoning about non-crisp concepts and relations.
Surprisingly, there have been only few attempts to
combine the advantages of both within one system
that we are aware of, viz. [9] and [8].

In this paper we have presented the fuzzy descrip-
tion logic with hedges ����� . It is a conserva-
tive extension of Fuzzy-��� defined by Umberto
Straccia in [8]. In [8] the classical description logic
��� is extended by interpreting concepts and rela-
tions as fuzzy sets, the correspondence of the fuzzy
semantics and the semantics of the equivalent “crisp”
��� is discussed and decision procedures for the
entailment and subsumption problem have been de-
fined. We extend the fuzzy description logic given
there by concept manipulators whose semantics is
based on hedge algebras.

Christopher B. Tresp an Ralf Molitor [9] extend
��� with membership manipulators, i.e., func-
tions that map the set ��� �� of fuzzy truth values
to ��� ��. These can be applied to the fuzzy sets

representing concepts in order to construct new con-
cepts. The membership manipulators are restricted
to triangular functions on ��� ��. Tresp and Molitor
also define a constraint propagation based method
for computing the degree of subsumption between
two concepts. However, their consequence relation
is counter-intuitive to us in some cases. In [9] a con-
cept � is subsumed by a concept � by the mini-
mum degree of � being satisfied in interpretations
that map � to �. Consequently, they can draw ar-
bitrary conclusions from a premise which is never
satisfied to degree �, but, say, only to ���. Such
a concept is discussed in Example 3. In �����

membership manipulators are hedges and the sub-
sumption of modified concepts is based–as we be-
lieve quite intuitively–on the “less than or equal” re-
lation of the corresponding � -values as shown in
Theorem 8. On the other hand, we can handle only
primitive concepts, whereas Tresp and Molitor deal
with concepts in general.

We hope that this paper is the starting point of a
fruitful combination of description logic, fuzzy logic
and hedge algebras based on the idea of manipulat-
ing concepts by hedges. In deed, many interesting
problems are yet to be solved. Hedges were only
applied to primitive concepts. The application of
concept modifiers to non–primitive concept seems
possible, but it leads to some counter–intuitive cases
where e.g. the expression very mol� can have two
different meanings: very �mol�� or �very mol �� .
In this paper we have only discussed the unsatisfi-
ability problem. Although we claim that the sub-
sumption problem is also decidable and can be dealt
with by extending the corresponding algorithm in
[8], it remains to turn this claim into a theorem.
Likewise, we believe that trace rules introduced in
[8] for Fuzzy-��� can be extended to deal with
����� , but, again, this remains to be rigorously
shown. Finding a good real-world application is vital
for the success of the proposed method. We believe
that the field of intelligent user-adaptive e-commerce
provides such examples.
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