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Abstract� It is rigorously shown how planning problems encoded as a
class of entailment problems in the �uent calculus can be mapped onto
satis�ability problems for propositional formulas� which in turn can be
mapped to the problem of �nding models using binary decision diagrams
�BDDs�� The mapping is shown to be sound and complete� First exper�
imental results of an implementation are presented and discussed�

� Introduction

In recent years propositional methods have seen a surprising revival in the �eld
of Intellectics� Greedy satis�ability testing and its variants ���� and the various
procedures for answer set computing 	e�g� ��
� �� are just two examples� But
only recently researchers have started to investigate whether BDDs may also
help to increase the e�ciency of algorithms solving typical problems in Intel�
lectics like� for example� planning problems ��� 
� ��� This comes to a surprise
because model checking using BDDs has signi�cantly improved the performance
of algorithms and enabled the solution of new classes of problems in areas like
formal veri�cation and logic synthesis 	see e�g� ��� ��� Can we adopt this tech�
nology for� say� problems occurring in reasoning about situations� actions and
causality� Can we enrich these techniques by exploiting the experiences made in
the state of the art implementations of propositional logic calculi and systems
mentioned at the beginning of this paragraph�

This paper reports on an attempt to �nd answers for these and related ques�
tions in the context of the �uent calculus� The �uent calculus is a formal system
for reasoning about situations� actions and causality which admits a well�de�ned
semantics as given in ���� and ����� In Section � a restricted fragment of the �uent
calculus is considered� which allows for the speci�cation of planning problems
as entailment problems in the spirit of ����� In Section � a transformation is for�
mally de�ned which maps these entailment problems onto satis�ability problems
in propositional logic� The mapping is shown to be sound and complete� Thus�
the decidability of the abovementioned fragment of the �uent calculus is estab�
lished� In Section � it is shown how the shortest plan solving the given planning
problem can be extracted from the propositional encoding� Finally� in Section �
�rst and promising �ndings of an implementation using BDDs are presented� In



Symbol f F�G� � � � F i� j� � � � z g s t

Element of �Fl L �L IN� �V�St �V�F l �V�Sit constructor state term

Table �� Notational conventions�

this implementation� the propositional logic formulas are represented by reduced
and ordered BDDs and techniques from model checking are applied to search for
models� A discussion of the achieved results in Section 
 concludes the paper�
Due to lack of space most of the proofs had to be omitted� They can be found
in detail in �����

� Foundations

In this section some notions and notations concerning logics� planning problems�
the �uent calculus and binary decision diagrams are presented�

��� Logics

Let �V � �F and �P denote disjunct sets of variables � function symbols and
predicate symbols respectively� �V is countably in�nite� whereas �F and �P

are �nite� The set of 	�rst order formulas is denoted by L	�V ��F ��P  � we
abbreviate this set by L if the sets �V � �F and �P can be determined from
the context� � denotes a substitution and X� the instance of the syntactic
object X under � �

Table � depicts some notational conventions in the sense that� for example�
whenever we use z � we implicitly assume z � �V�St � The sets �Fl � �V�St �
�V�F l � �V�Sit as well as constructor state terms are de�ned in Section ���� All
symbols are possibly indexed�

The entailment problem F j� F consists of a set F of formulas and a
formula F and is the question whether F entails F �

��� Planning

In this paper we consider planning problems having the following properties�
	i The set of states is characterized by a set of propositional �uents� i�e�� a
set of propositional variables� which can take values out of the set f���g of
truth values� 	ii The actions are deterministic and their preconditions as well
as e�ects depend only on the state they are executed in� 	iii The goal of the
planning problem is a property which depends solely on the reached state� This
class of problems corresponds roughly to the problems from track � and � of
the planning competition held at the �th International Conference on Arti�cial
Planning Systems 	AIPS��� There� planning problems were formulated within
a language called PDDL ����� Unfortunately� PDDL lacks a formal semantics� As
shown in ���� this can be recti�ed by a translation from PDDL into the �uent
calculus�



As an example of such a problem consider the so�called Gripper class�
A robot equipped with two grippers G� and G� can move between two rooms

A and B � Initially the robot is in room A together with a number of balls

B�� � � � � Bn � The task is to transport these balls into room B � The problems
di�er wrt the number of balls and are then called Gripper��� Gripper���

��� The Fluent Calculus

The �uent calculus is a calculus for reasoning about situations� actions and
causality� It is based on the idea to consider states as multi�sets of �uents and
to represent such states on the term level� The latter is done with the help of a
binary function symbol � � which is associative� commutative and has a constant
� as unit element ���� ��� ��� but is not idempotent� In this paper we consider
a restricted version of the calculus as speci�ed in this section�

Formally� the �uent calculus is an order�sorted calculus with sorts action �
sit � fluent� and state and ordering constraint fluent � state � The set
�V of variables is the union of the disjunct sets �V�A � �V�Sit � �V�F l and
�V�St � i�e�� it consists of a countable set of variables for each sort� The set �F

of function symbols is the union �A � �Sit � �Fl � �St � �O � where �A is
a set of function symbols denoting action names� �Sit � fS�� dog is the set of
function symbols denoting situations� �Fl is a set of constant symbols denoting
�uent names� �St � f�� �� stateg is the set of function symbols denoting states�
All sets are mutually disjoint and �nite� The mentioned function symbols are
sorted as follows�

S� � sit � � state� state � state � � state
do � action� sit� sit state � sit� state

The set �P of predicate symbols contains only the equality � with sort
state�state � The macros holds and set with sorts fluent�sit and state

respectively are often used�

holds	f� s
def
� 	��z state	s � f � �z 	�

set	z
def
� 		�f� �z z � f � f � �z

The language LFC of the �uent calculus is the set of all well�formed and
well�sorted �rst�order formulas over the given alphabet� State terms of the form
� � f� � � � � � fm � where f�� � � � � fm � fluent � m 
 � � are pairwise distinct� are
called constructor state terms �

The axioms F of the �uent calculus considered in this paper are the union
Fun � Fmset � FS� � Fms � Fsu �

� Fun is a set of unique name assumption for �uents combined with a domain
closure axiom for �uents�

Fun � f	f� � f� j f�� f� � �Fl and f� �� f�g � f	�g
�

f��Fl

g � fg �



� Fmset is a set of axioms ensuring that the sort state denotes �nite multisets
of �uents����� It consists of the following formulas�

 the standard axioms of equality

 the axioms AC� for � and � �

	�z z � � � z
	�z�� z� z� � z� � z� � z�

	�z�� z�� z� 	z� � z� � z� � z� � 	z� � z�

 an axiom that guarantees that �uents and � are the only irreducible
elements of sort state wrt� � �

	�z �	�g z � g � z � � � 	�z�� z�� z � z� � z�� � z� � � � z�� � ��

 a property called Levi�s axiom after a lemma used in the theory of trace
monoids�

	�z�� z�� z�� z� z� � z� � z� � z� � 	�za� zb� zc� zd

�z� � za � zb � z� � zc � zd � z� � za � zc � z� � zb � zd�

 an induction axiom�

	�P  �P 	� � 	�g� z 	P 	z � P 	g � z � 	�z P 	z� �

� FS� contains a single axiom �I 	state	s� of the form state	s� � t de�
scribing the initial state� where t is a constructor state term�

� Fms contains an axiom specifying that in each state each �uent may occur
at most once�

Fms � f	�s� z 		�g state	s � g � g � zg

� Fsu is a set of state update axioms of the form

	�

�
��p	s �

�
g���

holds	g� s �
�

g���

	holds	g� s

� state	do	a� s � �� � state	s � ��

�
� � 	�

where �� and �� are constructor state terms denoting the negative and
positive direct e�ects of an action a under condition �p	s � LFC respec�
tively� s � �V�S and 	� denotes the universal closure� �p	s is a boolean
combination of formulas of the form holds	f� s � In the following �	s will
be used to denote the antecedent of 	��

To exemplify Fsu and FS� consider the Gripper class� There are three
actions� 	i The robot may move from one room to the other� 	ii The robot
may pick up a ball if it is in the same room as the ball and one of its grippers



is empty� 	iii the robot may drop a ball if it is carrying one� These actions are
speci�ed by the state update axioms�

Fsu � f holds	at�robby	r�� s � 	holds	at�robby	r�� s
� state	do	move	r�� r�� s � at�robby	r� � state	s � at�robby	r� �

holds	at	b� r� s � holds	at�robby	r� s � holds	free	g� s
�	holds	carry	b� g� s

� state	do	pick	b� r� g� s � at	b� r � free	g � state	s � carry	b� g �

holds	carry	b� g� s � holds	at�robby	r� s � 	holds	at	b� r� s
�	holds	free	g� s

� state	do	drop	b� r� g� s � carry	b� g � state	s � at	b� r � free	g g

The initial state of a Gripper class problem is speci�ed by

FS� � fstate	S� � at	B�� A�� � ��at	Bn� A�free	G��free	G��at�robby	Ag�

where n is instantiated to some number� at	x� y denotes that ball x is in room
y � free	x that gripper x is free and at�robby	x that the robot is in room x �

Reasoning problems themselves are speci�ed as entailment problems in the
�uent calculus� For the Gripper class we obtain the entailment problem

F j� 	�s holds	at	B�� B� s � � � � � holds	at	Bn� B� s�

Expanding abbreviation 	� this can be reformulated as

F j� 	�s
�
	�z state	s � at	B�� B � z � � � � � 	�z state	s � at	Bn� B � z

�
�

which itself is equivalent to

F j� 	�z
�
	�s state	s � z �

	�z� z � at	B�� B � � � � � 	�z� z � at	Bn� B � z
�
�
�

In general� reasoning in FC amounts to solving an entailment problem of the
form

F j� 	�z
�
	�s z � state	s � �G	z

�
� 	�

where �G	z is a boolean combination of terms of the form 	�z� � z � z� � f
for some �uent f � In other words� one is looking for a situation� in which some
boolean combination of �uents holds� One should observe that �G	z is inde�
pendent of Fsu � FS� because it does not contain an expression of sort sit �

The �uent calculus FC considered in this paper is restricted wrt the general
calculus as follows� 	i Only constants are allowed as as �uents� 	ii States are
e�ectively sets of �uents due to Fms � 	iii The initial state is completely spec�
i�ed� 	iv The state update axioms specify only deterministic actions without
rami�cations or other constraints� The �rst restriction implies that the set of
�uents is �nite if �Fl is �nite� The second restriction implies that there are
only �nitely many di�erent states uniquely characterized by the set of �uents�
which hold in each state� if �Fl is �nite� As will be shown in this paper these
restrictions are su�cient conditions to ensure that the entailment problem 	�
in FC is decidable�



��� Binary Decision Diagrams

The idea of BDDs is similar to decision trees� a boolean function is represented
as a rooted acyclic directed graph� The di�erence to decision trees is that there
is a �xed order of the occurrences of variables in each branch of the diagram�
and that isomorphic substructures of the diagram are represented only once��

This can lead to exponential savings in space in comparison to representations
like decision trees or disjunctive or conjunctive normal form�

Bryant has shown in ��� that� given a �xed variable order� every boolean func�
tion is represented by exactly one BDD� Moreover� propositional satis�ability�
validity and equivalence problems are decidable over BDDs in linear or constant
time� Of course� the complexity of the mentioned problems does not go away�
the e�ort has been moved to the construction of the BDDs� But as Bryant has
shown as well� there are e�cient algorithms for logical operations� substitutions�
restrictions etc� on BDDs� whose cost is in most cases proportional to the size
of its operands� BDDs may be used as a theorem prover� i�e�� by constructing
a BDD corresponding to a logical formula� and checking the BDD for inter�
esting properties� but more often they are used as an implementation tool for
algorithms which are semantically based on boolean functions or� equivalently�
propositional formulas� or� via the characteristic functions� sets� In the imple�
mentation these formulas or sets are always represented as BDDs� The use of
BDDs in this paper follows this spirit�

� Mapping the Fluent Calculus onto Propositional Logic

The envisioned implementation will recursively generate sets of states which
are reachable from an initial state by applying actions until one of these states
satis�es the goal condition� This two�step behavior is already re�ected in 	��
The �rst conjunct expresses the fact that we are looking for a state z such
that z is obtained from state	S� by applying state update axioms� whereas
the second conjunct expresses the fact that in z certain �uents should or should
not hold� Starting with the �rst step and aiming at �nding a propositional logic
characterization of F j� 	�s z � state	s a relation T	z� z� is de�ned which
holds i� the state z� is a successor state of z wrt the state update axioms��

Moreover� this transformation allows for an encoding of the reasoning process
into propositional logic�

One should observe that after expanding the macro holds the precondition
�	s of each state update axiom

	� ��	s� state	do	a� s � �� � state	s � �� � Fsu� 	�

� Thus� the BDD is ordered and reduced� also called ROBDD� These properties are
so useful that they are required in almost all BDD applications� so many authors
include these properties into the de�nition of BDDs�

� This corresponds to the transition relation in �nite state systems�



e�ectively depends on state	s � and this term contains the only occurrences
of terms of sort sit occurring in the precondition of 	�� To explicitly express
this dependence we will write �	state	s instead of �	s � Making use of this
notation the expression �	z denotes the formula � � where each occurrence of
state	s has been replaced by z �

For each state update axiom �	a of the form 	� we de�ne

T��a�	z� z
�

def
� �	z � z� � �� � z � ��� 	�

and for the set Fsu of state update axioms we de�ne

T	z� z�
def
�

�
��a��Fsu

T��a�	z� z
�� 	


This de�nition is motivated by the following result�

Lemma �� Let t and t� be two constructor state terms and F j� state	s � t �
F j� state	do	a� s � t� i� Fun � Fmset j� T��a�	t� t

� for some �	a � Fua�

A binding of the form z	t � where t is a constructor ground term is called
constructor state binding � A substitution consisting only of constructor state
bindings is called constructor state substitution� In the sequel� � will always
denote a constructor state substitution�

The task to encode entailment problems in the �uent calculus into satis�a�
bility problems in propositional logic seems to be impossible on the �rst glance�
because there are in�nitely many terms of the sorts sit and state � whereas the
set of valuations of a �nite propositional program is �nite� Fortunately� however�
one is primarily interested in logic consequences of the form 	�s state	s � z
in which the only free variable z is of type state � From axiom Fms one learns
that the values for z may contain each �uent at most once� Because there are
only �nitely many �uents in FC� the set of possible bindings for z is also �nite�

More precisely� we want to show that whenever � is an answer substitution
binding z for the entailment problem

F j� 		�s �z � state	s � �G	z� �

then there exists a propositional valuation BS	� such that BS	� is a model for
an appropriately generated propositional logic formula� This formula is obtained
by giving an equivalent representation of the entailed formula in terms of �I	z �
T 	z� z� and �G	z and specifying a mapping B which maps this representation
to a propositional formula�

The basic idea underlying BS is as follows� Suppose �Fl � ff�� � � � � fmg �
Each variable z occurring in a constructor state substitution � � fz	tg is
represented by m propositional variables zf� � � � � � zfm such that in the propo�
sitional valuation v � B	� one obtains v	zfi � � i� fi occurs in t � A
formula F is represented by a propositional formula B	F  such that a ground
constructor substitution � is an answer substitution for Fun � Fmset j� F� i�
the valuation BS	� ful�lls B	F  � We turn now to a formal de�nition�



Ground constructor substitutions� Let z	t be a binding of a constructor state
substitution� Then BS	z	t is the valuation v de�ned by v	zf  � � i� f
occurs in t � for all f � �Fl � Let � be a constructor state substitution� Then

BS	� �
�

z�t��

BS	z	t�

Constructor state terms� Let � denote the exclusive or� For each f � �Fl

de�ne� �

Bf 	� � � Bf 	z � zf
Bf 	f � � � i� f � f � Bf 	t� � t� � Bf 	t�� Bf 	t�

Goal formulas� Recall that each goal formula �G	z is a boolean combination
of formulas of the form 	�z� z� � z � f � De�ne�

BG		�z� z � z� � f � zf � BG		G � 	BG	G�
BG	G �H � BG	G � BG	H�

F formulas� In the proof of the Theorem � B has to be applied to formulas of the
following form� Let F be the set of formulas de�ned by 	i z � t � F and 	ii if
F 	z � F and T	z� z� as de�ned in 	
� then 	�z �set	z � F 	z�T	z� z� � F �
For this class of formulas de�ne�

BF 	z � t �
V
f�FFl

	zf � Bf 	t
BF 		�z �set	z � F 	z �T	z� z�� � 	�	zf f��Fl

 �BF 	F 	z � BT 	T	z� z���

where

BT 	T	z� z� �
W
��a��Fsu

BT 	T��a�	z� z
��

BT 	T��a�	z� z
� � BG	�	z �

V
f��Fl

	Bf 	z
� � ��� Bf 	z � �

� �

	�	zf f��Fl
F � 	�zf� � � � 	�zfmF and

	�zf F � F �zf	�� � F �zf	��

assuming that BT 	T��a�	z� z
� is de�ned as in 	� and �Fl � ff�� � � � � fmg �

Furthermore� in the last equation F denotes a propositional logic formula and
F �zf	�� and F �zf	�� denote the formulas obtained from F by replacing all
occurrences of zf in F by � and � respectively�

Initial state Recall that the initial state is characterized by a formula
�I	state	s� with �I	z � 	z � t �

BI	z � t �
�

f occurs in t

zf �
�

f does not occur in t

	zf

In the sequel we will omit the index associated with B if it can be determined
from the context to which class of syntactic objects B is applied�

� Thus� B��� j� Bf �t�� is true i	 �uent f occurs an odd number of times in t� �



Lemma �� Let F be either �I	z � �G	z or an F formula and � a con�

structor state substitution such that F� does not contain any free variables�

Fun � Fmset j� F� i� B	� j� B	F  �

Thus� Lemma � provides a way to transform a restricted subset of �uent
calculus formulas 	which includes T	z� z�  into satis�ability�equivalent propo�
sitional formulas� This is the base to transform entailment problems in FC into
satis�ability problems in propositional logic� The steps of this transformation
are described in the proof of the following theorem�

Theorem �� Each entailment problem 	� in FC can be mapped onto a propo�

sitional satis�ability problem SAT� such that 	� is solvable i� SAT is solvable�

Proof� Consider the entailment problem in the �uent calculus�

F j� 	�z
�
	�s z � state	s � �G	z

�
�

By Fms this holds i� there is a constructor state substitution � such that
F j� 	� z� � state	s � �G	z��� or� equivalently�

f� j F j� 	�s z� � state	s � �G	z�g �� �� 	�

Because conjunction can be mapped onto set intersection 	� is equivalent to

f� j F j� 	�s z� � state	sg � G �� �� 	�

where G � f� j Fmset � Fun j� �G	z�g� Let m be the number of �uent
constants� Because of axiom Fms there are at most �m di�erent states and
because preconditions and e�ects of actions depend only on the current state�
the length of the shortest plan can be at most �m 	such that every state is
visited once� Thus 	� is equivalent to

f� j F j�
W�m

n�� 	�	ai��i�n z� � state	an � � � a�S�g � G �� �� 	�

where 	ai��i�n denotes a sequence of actions of length n � Because disjunction
can be mapped onto set union 	� is equivalent to

S�m

n�� Zn � G �� �� 	��

where Zn � f� j F j� 	�	ai��i�n z� � state	an � � � a�S�g� 	��

Because state	S� depends only on FS� � f�I	state	s�g and by Lemma �
equation 	�� can be computed recursively by

Z� � f� j Fmset � Fun j� �I 	z�g� 	��

Zn � f� j Fmset � Fun j� T	z��� z�� �� � Zn��g� n 
 �� 	��

With Z�	z � �I 	z� 	��

Zn	z � 	��z �set	�z � Zn��	�z � T	�z� z�� n 
 �� 	��



	�� and 	�� can be equivalently combined to

Zn � f� j Fmset � Fun j� Zn	z�g� n 
 �� 	�


From Lemma � we conclude that 	�
 is equivalent to

Zn � f� j B	� j� B	Zn	z�g� n 
 �� 	��

Finally� an application of Lemma � to G guarantees that 	�� is equivalent to

S�m

n�� Zn � f� j B	� j� B	�G	z�g �� �� 	��

where Zn is speci�ed in 	��� This� however� is equivalent to the propositional
satis�ability problem

n
� j B	� j�

	W�m

n�� B	Zn


� B	�G	z�

o
�� � �

where Zn is speci�ed in 	�� and 	��� �

The following corollary is an immediate consequence of Theorem � and the
decidability of propositional logic�

Corollary �� The entailment problem 	� in FC is decidable�

� Plan Extraction

In practical applications it is not only relevant whether a sequence of actions
	or plan solving the problem exists� but in most cases one would like to know
how such a plan looks like� As it turns out� it is possible to extend the decision
procedure presented in the previous section such that a plan can be recovered�
Very pleasantly� the extended algorithm returns always the shortest plan�

The main idea for extracting the plan is the following� The sets Zi con�
structed in the proof of Theorem � characterize the states reachable from the
initial state after i actions� Thus� if Zi�G �� �� i�e�� if Zi contains a goal state�
then there must be a plan of length i � The plan can now be reconstructed step
by step by taking a substitution � 	characterizing a state z�  from the intersec�
tion� computing the intersection of the set of states from which this state may be
reached and Zi�� � and repeating this process until eventually the initial state is
encountered� Thus� we �nd a sequence ��� � � � � �n of substitutions representing
the states z��� � � � � z�n � where the �rst one is the initial state speci�ed by FS� �
the last one ful�lls the goal �G	z�n and z�i�� � � � i � n is reachable from
the previous state z�i by executing an action� The �nal step is to �nd actions
which transform each z�i to z�i�� by �nding a state update axiom �	a such
that Fun � Fmset j� T��a�	z�i� z�i�� �

In the implementation of the algorithm all sets and formulas are represented
by in their BDD representation B � Please note that it su�ces to compute the
sets 	Zii�������� until either a solution is found or it can be determined that all



reachable states have been visited 	such that the sequence becomes stationary
or cyclic�

Algorithm �� Let Zi � i � � � i � �m be the sets computed by equation 	���
If 	�� is not ful�lled return �unsolvable�� else take the smallest n such that

Zn � f� j B	� j� B	�G	z�g �� �

and choose a sequence ��� � � � � �n of substitutions and a sequence a�� � � � � an of
actions such that

�n � Zn � f� j B	� j� B	�G	z�g�

�i�� � Zi�� � f� j B	� j� B	T	z� z�ig and

ai such that B	T��ai�	z�i��� z�i � �

Then s � an � � � a�S� corresponds to a shortest plan wrt the goal �G �

Theorem �� Algorithm � is correct and complete�

In other words� the algorithm always proves either that there is no plan or returns
a shortest plan solving the problem�

� An Implementation using BDDs � First Results

The theoretical results presented in the previous two sections can be applied
to use a BDD implementation as the inference engine for solving entailment
problems 	� in FC and computing plans� The implementation closely follows
the structure of the constructions used in the proofs� Starting from a �uent
calculus speci�cation of the entailment problem� the inference engine constructs
for each action a the BDD�representations for B	T��a�	z� z

� � and computes
their disjunction B	T	z� z� by 	
� The BDDs of the formulas B	Zi	z are
computed iteratively by application of 	�� and 	�� translated by B � Thus�
BDD representations of the sets Zi are computed iteratively until either an i
is reached such that Zi � Zi�� or Zi�f� j B	� j� B	�G	z�g �� � � Similarly�
Algorithm � can be implemented using BDDs�

This approach is an implicit� breadth �rst search� In each single step the
whole breadth of the search tree in depth i is searched� The sets Zi can get
quite complex and their BDDs quite large� Even more so� the size of the BDD for
B	T	z� z� � can quickly become too large to be handled in a graceful manner�
Thus� a number of techniques were invented to limit a potential explosion in its
size� In the sequel some of these techniques and their e�ects are sketched using
examples from �����

� It is called implicit because the calculated sets of states are never explicitly enu�
merated� but represented as a whole by a BDD� whose size depends more on the
structure of the set� than on its actual size�



Variable Order It is well known that the variable order used in a BDD has a large
in�uence on the size of the BDD� Unfortunately it is still a di�cult problem to
�nd even an near optimal variable order�	 Often� a good variable order is found
by empiric knowledge and experimentation� In experiments it has turned out
that �uents� which directly in�uence each other� should be grouped together�
We have developed a variable ordering called sort order� which employs this
idea by grouping �uents by their arguments� since �uents sharing arguments are
likely to in�uence each other� In planning problems that use sorts to restrict
the considered argument values for �uents� arguments belonging to large sorts
are preferred in this ordering� Due to lack of space a precise de�nition of this
heuristic can not be given here� On some problems this ordering lead to im�
provements of orders of magnitude in the size of the BDDs if compared to a
simple lexicographical ordering� but this depends on the domain of the problem
	of course�

Partitioning of the Transition Relation The maximal size of a BDD is expo�
nential in the number of propositional variables it contains� Thus� the BDD
representing B	T	z� z� � which contains twice as many propositional variables
as the BDDs representing the Zi � is prone to get very large� A way to reduce
this problem is to divide the disjunction T	z� z� into several parts T�	z� z

� �
� � � � Tn	z� z

� � which correspond to subsets of the state update actions� In ex�
periments� partitioning led to a reduction in the size of the BDDs in most of the
tested problems�

On the other hand� such a decrease in the size of the BDDs does not necessar�
ily lead to a decrease in computation time� In each step� the results of applying
the parts of the transition relation to the set of states reached so far have to be
put together� and this takes time� Nevertheless� partitioning may be useful even
if the computation time increases� In the experiments� one problem 	Mprime�x�

� could only be solved after a partitioning of the transition relation� otherwise�
the memory exceeded before a solution was found�

Frontier Simpli�cation explores the fact� that the algorithm for solving the en�
tailment problem in the �uent calculus works also if the following two conditions
are enforced for all i 
 � � 	i Zi represents all states which may be reached by
executing i actions� but not by executing less than i actions� 	ii Zi does not
represent any states which cannot be reached by executing at most i actions�
The sets Zi can be chosen freely within these limitations� Hence� it is desirable
that the algorithm chooses the Zi such that their BDD representations are as
small as possible� In our experiments� frontier simpli�cation has sometimes lead
to moderate improvements both in computation time and memory requirements�

To the end of this section the experimental results on the Gripper class are
discussed� These problems were quite hard for the systems taking part in the
AIPS�� competition� The di�culty is rooted in the combinatorial explosion of

� The problem to �nd the optimal variable order is NP�complete�
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Fig� ��Runtimes of di	erent planners onGripper class problems �in milliseconds� with
di	erent numbers of balls� Planners marked with opt provided optimal �i�e�� shortest�
plans� planners marked with �adl work on the sorted version of the domains� the others
on the STRIPS�version�

alternatives due to the existence of two grippers� In Fig� � the runtimes of these
planners
 are compared to our system� BDDplan�� Only one planner 	HSP was
able to solve all of the problems of this class� but it generated only suboptimal
plans by using only one of the two grippers� whereas BDDplan generates the
shortest possible plan by design�

� Discussion

We have formally speci�ed a mapping from entailment problems in a restricted
�uent calculus to satis�ability problems in propositional logic� which is sound
and complete� and we have reported some �rst experimental results of an im�
plementation using BDDs� We are still in the process of investigating how opti�
mization techniques well�known in the area of model checking using BDDs can
be adapted such that they increase the e�ciency of the implementation�

The mapping is tailored to a speci�c class of �uent calculus formulas� It seems
likely that there is a more general way to translate the formulas of a larger
fragment of the �uent calculus while keeping the restriction to propositional
�uents� such that we could introduce recent work on the �uent calculus like
rami�cation ���� ��� into the planner without modifying the translation and the
proofs� The concept of rami�cation within the �uent calculus involves a limited
use of constructs of second order logic� namely a calculation of the transitive
closure of a relation over states� but this does not seem to pose a di�cult problem
as the set of states is �nite and there are algorithms to compute this transitive
closure using BDDs ����

Although the problems considered in this paper admitted only a single initial
state 	i�e� Z� is unitary� the algorithm itself is not restricted to this case� If

� See http���ftp�cs�yale�edu�pub�mcdermott�aipscomp�results�html�
� The runtime of BDDplan is measured on a di	erent machine� so it is only accurate
up to a constant factor�



the initial situation is incompletely speci�ed then there are several initial states�
which leads to a set Z� containing more than one element�

At present� our algorithm is closely related to model checking algorithms ���
which perform symbolic breadth �rst search in the state space� It generates a
series 	Zii������ of propositional formulas represented as BDDs� which repre�
sent sets of answer substitutions that encode logical consequences of the �uent
calculus speci�cation describing the set of reachable states� This process is exe�
cuted until a goal state is found or until unsatis�ability of the problem can be
determined� The approach has the advantage that it always generates shortest
plans� and is able to prove that there is no plan if there isn�t one� Unlike plan�
ning algorithms based on planning as satis�ability ���� and Graphplan ��� the
algorithm presented here is not limited to the generation of polynomial length
plans� On the other hand� each time step may take space exponential space� since
the maximum size of BDDs is O	�n for n propositional variables� However�
the experimental results achieved so far indicate that in practice the BDDs are
much smaller than the theoretical limit�

Still� the size of the encountered BDDs is the main problem limiting the scal�
ability of the algorithm and is a topic of further research� Since the maximum size
of BDDs is exponential in the number of propositional variables� the reduction
of this number is a foremost concern� Unlike the approach taken in �
�� which
explores new possibilities in the generation of plans for non�deterministic do�
mains using BDDs� we can avoid the encoding of the actions with propositional
variables in order to reduce the BDD sizes�

The encoding we use at present is �naive� in the sense that each �uent
corresponds to a single propositional variable� We assume that the use of do�
main dependent properties of �uents provides a large space for improvements�
as discussed in ��� for the BDD based planning systemMips� which is used to ex�
plore automated generation of e�cient state encodings for STRIPS�ADL�PDDL
planning problems and the implementation of heuristic search algorithms with
BDDs�

To sum up� our BDD based implementation shows some promising initial
results but it is too early to completely evaluate it yet�
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