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Abstract: We introduce a conservative fuzzy logic extension of the Naive Bayesian
classification algorithm. The extension generalizes the algorithm such that the exam-
ples are described by a fuzzy set of attributes, instead of a classical set. Thus, an
example possesses each attribute to a degree in[0, 1]. We present a new classification
algorithm usable with fuzzy sets that is (a) fast, (b) is able to work with few training
examples, (c) uses a compact representation of the internal model, (d) is able to deal
with missing attributes, and (e) can be used for incremental learning, such that a rapid
alternation of learning of new examples and classification of examples is possible.
Our extension to Naive Bayesian classification is conservative in the sense that in the
classical limit, when every fuzzy membership degree of the attributes is 0 or 1, our
algorithm behaves exactly as the Naive Bayesian classification algorithm.
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1. Introduction
Classification algorithms play an important role in
numerous applications. There are many applica-
tions for sophisticated algorithms like C4.5 [12] or
Bayesian Networks [6] that can handle large datasets
and model complex classification functions. On the
other hand, there are also “small” applications for
classification algorithms in which speed and com-
pact representation are more important than accuracy
and ability to deal with large datasets.

Some of these “small” applications can be found
in user modeling. Let us consider such an applica-
tion. In [3] we describe a system implemented into
e-shop systems of hybris [9], in which the products
in the web shop are presented in a personalized way.
The user can interactively change the presentation
by enlarging / shrinking pictures, folding texts into
headlines and vice versa, and so forth. Naturally,
these interactions provide us with information on the
users preferences, such that the system is able to con-
struct a model of the preferences of each user. This
model is then used to adapt the presentation of fur-
ther web pages viewed by the user.

In our system, a web page is composed of con-
tent fragments that can be shown in a decollapsed
resp. collapsed form, such as an large image resp. a
thumbnail of that image, or a full text resp. only the
headline of that text. These content fragments are
automatically arranged in the web browser window
to form an optically pleasant layout. When the user
views a new web page, the page is adapted to her
preferences by classifying its content fragments as
interesting resp. not interesting for her, and showing
in decollapsed resp. collapsed form.

The classification is based on attributes given to

1The author acknowledges support by hybris GmbH,
Munich, Germany, within the project “Intelligent Systems
in e-Commerce” (ISeC).

the fragments by the shop operator. For such an ap-
plication we need a fast and compact classification
algorithm, because the system has to solve classifi-
cation tasks for each web page view of a potentially
large number of visiting users based on relatively lit-
tle data.

A (supervised) classification algorithm is an algo-
rithm that takes a set of training examples as input.
These are often described by attribute - value pairs,
e.g.,type = pictureor content = technicaldetailsfor
a content fragment. Usually, discrete or continuous
attributes are distinguished, depending on whether
the attributes can take a finite number of values or,
for example, values in a range of real numbers. One
of the discrete attributes is distinguished as the class
attribute of the example. The classification algorithm
uses these training examples to generate an internal
model of the input data, with which it can predict the
class of new, unseen, examples. (Some algorithms,
e.g., instance based classificators, can do without an
internal model, though.)

In [3] we discuss the adequacy of a number of
compact learning algorithms in the discussed setting
of an adaptive web presentation, namely CDL4 [13],
ID3 [11], ITI [14], FID [10] and Naive Bayes clas-
sification [7]. Here, we feel that it is sensible to
distinguish fuzzy attributes as a third kind of at-
tribute. Consider for example an online-shop for
clothing. The interest of the customer in different
content fragments will usually be influenced by the
product she/he is viewing. For instance, when buy-
ing fashionable clothes the customer will probably
want to see pictures. On the other hand, when buy-
ing clothes where fashionability is not an issue, e.g.,
work clothes, the pictures might become less impor-
tant in favor of technical details like fabric and man-
ufacturing quality. But: what kind of an attribute
is fashionability? Certainly, fashionability can be
represented by a continuous (say, ranging from 0 to



1) or a discrete attribute (say, ranging fromnot at
all over a little, more or lessto very). However,
both approaches have shortcomings with many of the
conventional classification algorithms. Different dis-
crete values of attributes are often treated like they
are completely unrelated (whereas the customer will
probably judge informations aboutnot at all fash-
ionable products similar to informations abouta lit-
tle fashionable products). On the other hand, con-
tinuous attributes do reflect the relation between 0
(signifying not at all and 0.2 (signifyinga little),
but classification algorithms deal with them often by
splitting the range into several sub-ranges that are
considered separately.2In our case, however, this
seems inappropriate, because there are usually only
few training examples, making an elaborate division
of the [0, 1]-range seem inappropriate. Thus, we opt
for the use of fuzzy sets [15] of attributes, interpret-
ing the value of the attribute as a membership degree
that determines to which extent the example is de-
scribed by the attribute. In effect, the values between
0 and 1 are treated with some form of “interpolation”
of the extremes 0 and 1. We believe a degree seems a
sensible kind of judgment wrt. a statement like “the
product is fashionable”.

Let us review the sketched main requirements for
the classification algorithm in our application:

1. Fast, incremental learning. Since classification
and adding new training examples take turns as
the user alternates between interacting with a web
page and calling new web pages, the classifier
should not have to construct a new model from
scratch every time new data is added.

2. Learning from few examples. The adaption of the
presentation to the users preferences has to start
immediately, because we usually cannot rely on
data from data from the past - users often do not
like to login.

3. A compact representation of the internal model.

4. As discussed, allow the use of fuzzy attributes.

In [8] we noted, that only few algorithms that sat-
isfy these criteria are available, and developed an in-
cremental algorithm IIFDT to construct and manip-
ulate fuzzy decision trees. In this paper we present
another new classification algorithm that satisfies the
requirements above by extending the old and well–
known Naive Bayesian classifier to fuzzy attributes.
In spite of their simplicity and often unrealistic as-
sumptions (see Section 2.), Naive Bayesian classi-
fiers often yield surprisingly good results in compari-
son to decision tree or rule based systems [5, 4]. Fur-
thermore, their results can sometimes be interpreted
much more easily than large decision trees, and re-
spect the quite “holistic” nature of human reasoning
to some extent. Hence, they seem a good choice for

2A notable exception would be neural networks and re-
lated approaches, but most require a computationally ex-
pensive training phase making them less suitable for online
applications.

our application, after we have paved the way to apply
these to fuzzy attributes.

While Naive Bayesian classification has been em-
ployed to continuous attributes in [2], the approach
used there works only if one can give a probability
distribution for the continuous attributes, which does
not seem meaningful in the case of fuzzy truth val-
ues. So we employ another way to extend the algo-
rithm to fulfill our requirements.

The remainder of the paper is organized as fol-
lows. In Section 2 we present the basic idea of the
Naive Bayesian Classifier with discrete attributes.
This is then extended to fuzzy attributes in Section 3.
A short discussion of the handling of missing at-
tributes is given in Section 4. Section 5 discusses
complexity issues.

2. The Naive Bayesian Classifier
Let C denote a class attribute with a finite domain
dom(C) of m classes, andV1 . . . Vn a number at-
tributes with finite domains dom(V1) . . . dom(Vn).
An examplee is described by its attribute values
ve
1 ∈ dom(V1), . . . ve

n ∈ dom(Vn). To simplify the
presentation, we assume in the remainder of the pa-
per that all of these values actually occur in the train-
ing examples, such that none of the discussed prob-
abilities are zero. In practice, this demand can easily
be fulfilled by only considering the values that al-
ready occured in the examples.

Naive Bayes classifiers implement a probabilistic
idea of classification: they calculate the class of a
new examplee by estimating for each class from
dom(C) the probability that the example is in this
class, and predict the most probable class as the class
of e. Formally, for allc ∈ dom(C) they estimate the
probability

P (C = c | V1 = ve
1, V2 = ve

2, . . . , Vn = ve
n)

that an example with attribute values like the given
new examplee has the classc. To improve read-
ability, we will use in the followingP (. . . ve

i . . . ) as
an abbreviation forP (. . . Vi = ve

i . . . ), as well as
P (. . . c . . . ) as an abbreviation forP (. . . C = c . . . ).

In practice, a complete table of these conditional
probabilities would usually be too large to memo-
rize, because its size is exponential in the number of
attributes. Moreover, the number of training exam-
ples is often too small to give a good estimate for all
these values. So, the idea of Naive Bayes classifica-
tion is first to apply the Bayes rule

P (Y | X) =
P (X | Y )P (Y )

P (X)

to the valueP (c | ve
1 . . . ve

n) we are looking for:

P (c | ve
1 . . . ve

n) =
P (ve

1 . . . ve
n | c)P (c)

P (ve
1 . . . ve

n)
.

Since the table of all probabilitiesP (ve
1 . . . ve

n | c) is
just as large as a table forP (c | ve

1 . . . ve
n), there is a



second step: the “naive” assumption that all attribute
values are independent given the class value

P (ve
1 . . . ve

n | c) = P (ve
1 | c) . . . P (ve

n | c) , (1)

P (ve
1 . . . ve

n) = P (ve
1) . . . P (ve

n) , (2)

giving us the probability estimation

P (c | ve
1 . . . ve

n) =
P (ve

1 | c) · · ·P (ve
n | c)

P (ve
1) · · ·P (ve

n)
P (c) .

(NBayes)
The independence assumption is naive in that it is
in general not met. Nevertheless, Naive Bayesian
classifiers give quite good results in many cases, and
are often a good way to perform classification when
there is too little data on those dependencies to em-
ploy more sophisticated means. As [1] discusses,
they can be seen as a special case of Bayesian Net-
works [6], which take attribute dependencies into
consideration.

In an application using (NBayes) for classifica-
tion of examples,P (c | ve

1 . . . ve
n) is calculated for

all c ∈ dom(C) to find the maximum value. Here,
the denominator in (NBayes) serves as a normalizing
factor that can be omitted from the calculation.

A further issue is the estimation of the probability
valuesP (ve

i | c) andP (ve
i ) given a setL of training

examples. The “obvious” solution

P (ve
i ) ≈

| L|Vi=ve
i
|

| L |

P (c) ≈ | L|C=c |
| L |

(3)

P (ve
i | c) ≈

| L|Vi=ve
i ,C=c |

| L|C=c |

is not well suited for the estimation of these proba-
bilities from small setsL, because it often estimates
the probabilities to extreme values like1 or 0. If, for
instance, a class value does not occur in a training
set of 4 examples, it seems warranted to estimate its
probability to, say, a value in the interval[0, 1

4 ], but
the value0 calculated by (3) is the very edge of that
interval, and thus seems a rather bad estimate. The
Laplace-correction smoothes the calculated proba-
bility values: when an experiment withk possible
outcomes is performedn times, the probability of an
outcome occurringr times is estimated tor+1

n+k . Ap-
plied to our setting, this yields the estimations3

P (ve
i ) =

| L|Vi=ve
i
| +1

| L | + | dom(Vi) |
,

P (c) =
| L|C=c | +1

| L | + | dom(C) |
, (4)

P (ve
i | c) =

| L|Vi=ve
i ,C=c | +1

| L|C=c | + | dom(Vi) |
.

3A pleasant side effect of using the Laplace correction
is that we do not have to deal with zero probabilities in the
denominator of (NBayes).

Summing up: Naive Bayes classification for discrete
attribute values is performed for an examplee by
predicting its class to the valuec ∈ dom(C) with
maximum probabilityP (c | ve

1 . . . ve
n) calculated as

in (NBayes) using estimations for the needed proba-
bilities as, e.g., in (4).

3. The fuzzy extension
In the fuzzy case we generalize the concept of an at-
tribute such that an examplee does not have exactly
one valueve

i ∈ dom(Vi) for each attributeVi, but has
each valuevi ∈ dom(Vi) to a degreeµe

vi
∈ [0, 1].

This corresponds to the concept of a linguistic vari-
able in fuzzy logic: the attribute names a linguis-
tic variable, and each of the values of this attribute
corresponds to a linguistic term. The restriction to
one class per training example is also lifted: they
are classified to a degreeµe

c ∈ [0, 1] for each class
c ∈ dom(C). We assume these degrees are normal-
ized for each example:∑

vi∈dom(Vi)

µe
vi

= 1
∑

c∈dom(C)

µe
c = 1 (5)

For the moment, let us reinterpret these degrees
probabilistically. Let us think of the degreeµe

vi
as the

probabilityP (vi | e) an examplee has an attribute
vi. This is not the intrinsic meaning of a fuzzy truth
degree - a product is not fashionable with a probabil-
ity 30% but rather to a degree 0.3, but we will see it
allows us to extend the Naive Bayes classification in
a natural way.

P (ve
i = vi | e) = µe

vi
P (ce = c | e) = µe

c (6)

To avoid cluttering, we useP (. . . vi . . . | e) as an ab-
breviation forP (. . . ve

i = vi . . . | e) . Furthermore,
we assume all attribute values and the class value are
independent in this artificial probability distribution
for e. So, we can calculate the probabilityP (c | e)
an examplee has classc as follows. First, we split
over all cases for the actual attribute values, assum-
ing the class depends only on these values.

P (c | e) =∑
v1∈V1,...vn∈Vn

P (c | v1 . . . vn)P (v1 . . . vn | e)

Next, we make the assumption that the attribute val-
ues of examplee are independent of each other.
Note that these probabilities are subject of our re-
interpretation of the fuzzy truth degrees. We obtain:∑

v1∈V1,...vn∈Vn

P (c | v1 . . . vn)P (v1 | e) · · ·P (vn | e)

At this point, we can lift our reinterpretation of the
fuzzy truth values and go back to membership de-
grees using (6). So we get:∑

v1∈V1,...vn∈Vn

P (c | v1 . . . vn)µe
v1
· · ·µe

vn



Application of the Bayes rule toP (c | v1 . . . vn)
yields:

∑
v1∈V1,...vn∈Vn

P (v1 . . . vn | c)P (c)
P (v1 . . . vn)

µe
v1
· · ·µe

vn

Now we apply the same naive independence assump-
tion as in the classical case.∑

v1∈V1,...vn∈Vn

P (v1 | c) · · ·P (vn | c)P (c)
P (v1) · · ·P (vn)

µe
v1
· · ·µe

vn

We move constant factors in front of the first sum

P (c)
∑

v1∈V1

P (v1 | c)
P (v1)

µe
v1

∑
v2∈V2,...vn∈Vn

P (v2 | c) · · ·P (vn | c)
P (v2) · · ·P (vn)

µe
v2
· · ·µe

vn
,

and repeat this with the other sums. Finally, we find
using distributivity:

P (c | e) = P (c)

( ∑
v1∈V1

P (v1 | c)
P (v1)

µe
v1

)
· · ·( ∑

vn∈Vn

P (vn | c)
P (vn)

µe
vn

)
(FNBayes)

Observe that this formula is quite similar to the clas-
sical case (NBayes). Indeed, if we consider the ex-
treme case when for each attributeVi only one of
theµe

vi
with vi ∈ dom(Vi) is 1 and the others are0,

then the example is described as in the classical case
by the attribute values for whichµe

vi
= 1, and we get

the same result with both formulas. Varying the truth
degrees between those extremes yields a continuous
transition between the classically calculated values.
Note, that we can apply (FNBayes) both to classify
the example to a “crisp” class value by returning the
class with maximum probability, or treat the prob-
abilities like fuzzy truth values, returning them as
truth degreesµe

c for all classesc ∈ dom(C).
To apply (FNBayes) to our classification task, we

have to estimate the probabilities used in (FNBayes).
We can carry over the spirit of (4) to our fuzzy set-
ting by using the corresponding fuzzy set sizes. I.e.,
to find the size of a set we calculate the sum of the
degrees the examples belong to that set. For instance,
| L|c | becomes

∑
e∈L µe

c. 4 Again, it seems advis-
able to use the Laplace correction for small training

4This is consistent with our temporary probabilistic
reinterpretation: what we get this way is the mean size
of the set| L|c |, assumingP (c | e) = µe

c. The alert
reader will notice that we implicitly use the algebraic t-
norm in (7), again consistent with our reinterpretation of
fuzzy degrees of truth.

sets. So we find:

P (vi) =

(∑
e∈L

µe
vi

)
+ 1

| L | + | dom(Vi) |

P (c) =

(∑
e∈L

µe
c

)
+ 1

| L | + | dom(C) |
(7)

P (vi | c) =

(∑
e∈L

µe
vi

µe
c

)
+ 1(∑

e∈L
µe

c

)
+ | dom(Vi) |

.

4. Missing Attributes
In many practical cases it happens that some exam-
ples have missing attributes, i.e., for some of the at-
tributes the value for that example is not known. One
can imagine a number of ways how to handle this
problem. The best way to do this depends on the
application.

Let us first consider the case that these attributes
are missing due to some kind of “transmission fail-
ure”. That is: in principle there are values for these
attributes of the examples, but we just don’t know
them. Both in the case of Naive Bayes classification
and our fuzzy variant, we can easily classify exam-
ples with missing attributes by simply omitting these
attributes from the calculation. If, on the other hand,
attributes are missing from examples of the training
set, we have to modify the equations (4) resp. (7) for
estimating the probabilities such that only the part
LVi

of the training setL, for which the considered at-
tributeVi is not missing, is considered. For instance,
we would have

P (vi) =

( ∑
e∈LVi

µe
vi

)
+ 1

| LVi
| + | dom(Vi) |

.

In some applications, however, missing attributes
occur because the attributes simply do not apply to
some of the examples. A clothing shop, for instance,
might sell miscellaneous items like coat hangers, for
which an attribute like fashionability has no mean-
ing. If we just ignore the attribute like suggested
above, we lose something because the fact of the ab-
sence of this attribute does convey information about
the example. So we might be better off by introduc-
ing an additional valueabsentin the domain of such
attributes, that replaces a missing value in an exam-
ple.

5. Complexity Considerations
Let us consider the space and time complexities of
the algorithms. To use Naive Bayesian classification
resp. its fuzzy extension in an application, we have



to implement two basic operations: adding a new
training example toL, and classification of an exam-
ple. In the following we discuss the time complexi-
ties of these operations, as well as the space needed
for the database used in the operations. As the reader
can easily verify, the additional space needed for per-
forming both mentioned operations is less than the
space needed for the database, and is therefore not
an issue.

Let k = |dom(C)| be the number of classes and
v = maxi=1...n |dom(Vi)| the maximal number of
values of an attribute. To apply the Naive Bayesian
classifier we have to memorize and update the val-
ues| L |, | L|C=c |, | L|Vi=vi |, and| L|Vi=vi,C=c | for
all c ∈ dom(C), i = 1 . . . n and vi ∈ dom(Vi),
which are used with (4) and (NBayes) for the clas-
sification of new examples. This gives a space com-
plexity of O(knv) for the database, as well as a time
complexity ofO(n) for updating these values with
data from a new example. For the classification of
an example we get the time complexityO(kn), be-
cause (NBayes) has to be calculated for allk classes
c ∈ dom(C).

For the fuzzy extension of the Naive Bayesian
classifier, the database consists of the values used
at the right sides of (7):| L |,

∑
e∈L µe

vi
,
∑

e∈L µe
c,∑

e∈L µe
c, and

∑
e∈L µe

vi
µe

c for all c ∈ dom(C),
i = 1 . . . n andvi ∈ dom(Vi). So, again, the size
of the database isO(knv). Since an example in the
fuzzy extension can have all attribute and class val-
ues to a nonzero degree, updating the database with a
new example can requireO(knv) steps. The classifi-
cation of an example requires thek-fold computation
of (FNBayes), and thusO(knv) steps.

Table 1 summarizes the complexities. Note that
all values are independent from the number of
learned examples| L | - the algorithm does not need
to memorize the examples, but rather keeps “book-
keeping values” in its database, which summarize
the examples. Therefore, we think the algorithm is
suited very well for incremental application.

In many applications, like our discussed applica-
tion, k and v are small values like 2 or 3; onlyn
is large. In this case, the algorithm complexity is
optimal in a sense that the database space and the
runtimes of the adding and classification procedures
are in the order of the size of the examples added /
classified – one can only fall significantly below this
value when parts of the example are not used at all.5

Thus, we consider the algorithm as fast and having a
compact internal representation.

6. Conclusion
We have introduced an extension of the supervised
Naive Bayesian classification algorithm that allows

5Some algorithms, like decision tree based algorithms,
do indeed only use parts of the example for the classifi-
cation. The price payed are more expensive computations
to find out which parts of the example are most important.
Thus, the “add” operation is more expensive.

N.Bayes Fuzzy N.Bayes
example size O(n) O(k + nv)
d.b. space O(knv) O(knv)
add O(n) O(knv)
classify O(kn) O(knv)

Table 1: Space for one example, space of the
database and time complexities for the operations
adding an example and classifying an example for
the discussed algorithms.
k = |dom(C)| andv = maxi=1...n |dom(Vi)|.

the use of fuzzy attributes. We argue that this algo-
rithm is suitable to work in applications that provide
only small training sets and require a compact repre-
sentation of the internal model. The algorithm is eas-
ily able to work in an incremental manner because
new examples just require an update of the sums and
set sizes used at the right side of (7). (In contrast, for
instance the incremental variants of decision tree al-
gorithms like ITI and IIFDT usually require the stor-
age of all examples used while constructing the tree,
and periodically require an computationally expen-
sive restructuring of the decision trees.) We feel that
the algorithm can be a valuable alternative in the set
of existing classification algorithms.
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